Curriculum Learning in Deep Neural Networks for Financial Forecasting

Allison Koenecke & Amita Gajewar <u>koenecke@stanford.edu</u> <u>amitag@microsoft.com</u>

Presented at MIDAS 2019

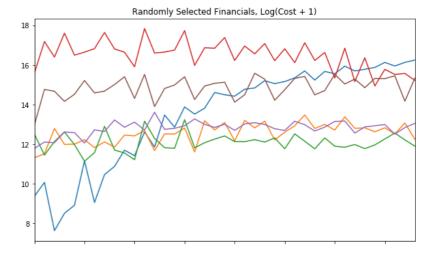
Problem Statement

• Goal

- Explore potential of using deep neural network (DNN)-based models to make more accurate predictions of Microsoft's revenue for each product
- Compare the DNN-based model performance with previously developed ensemble models [1] combining traditional statistical methods (e.g., ETS, ARIMA) and basic ML models (e.g., random forest) deployed into production for comparison purpose

• Data

- Time series of Microsoft revenue for each fiscal quarter from FY2009 Q1 to FY2018
 Q3, for each product
 - 8 product segments
 - 60 regions / segment
 - 20 products / region



[1] Improving Regional Revenue Forecasts using Product Hierarchy, Amita Gajewar. International Symposium on Forecasting 2018.

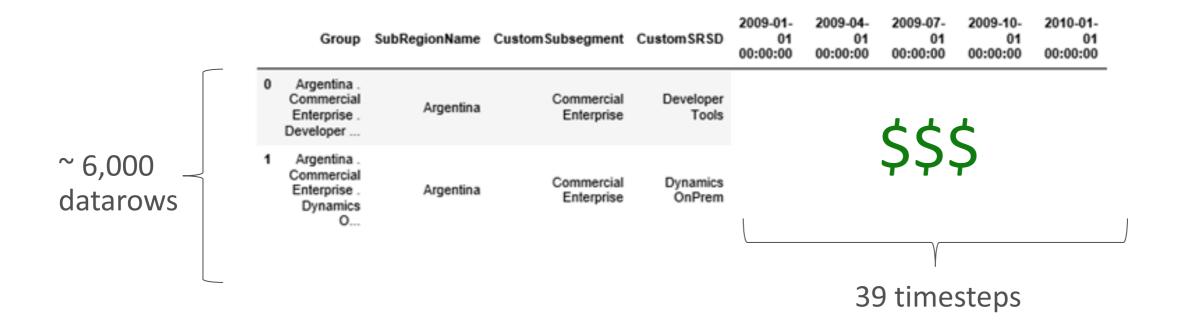
Motivation

- Prior work using deep learning methods
 - Are mostly run on "big" data whereas our data are medium-sized
 - Mostly use basic stacked LSTMs rather than advanced techniques
 - Rarely compare multiple pre-processing mechanisms
 - Usually do not use categorical data as inputs alongside time series
- In addition to covering the above, we present novel ideas in that
 - Model techniques are borrowed from other applications (NLP and computer vision) and applied to time series forecasting
 - We invoke a novel application of curriculum learning as applied to time series

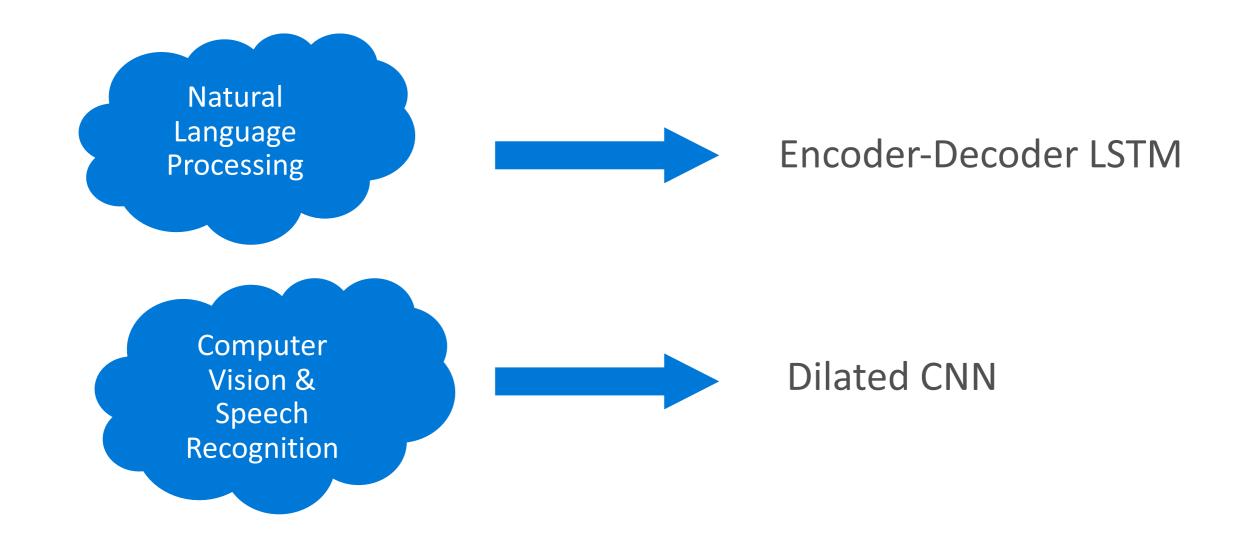
Data Pre-Processing

- Data Cleaning
 - Adjust all revenue values to USD with a constant exchange rage
 - Remove rows if over half of the timesteps have missing values, or if actual values within past 4 quarters are missing

- Within-Task Transfer Learning
 - Only train model on time series with at least 6 years of data
 - The 84% of datarows with enough historical data are trained and applied to datarows lacking enough data for inputs



Two DNN Methods



Encoder-Decoder LSTM

Variants of Encoder-Decoder LSTM

- 1. Basic Encoder-Decoder LSTM
- 2. LSTM with Categorical Indicators
- 3. LSTM with Seasonality
- 4. LSTM with Curriculum Learning

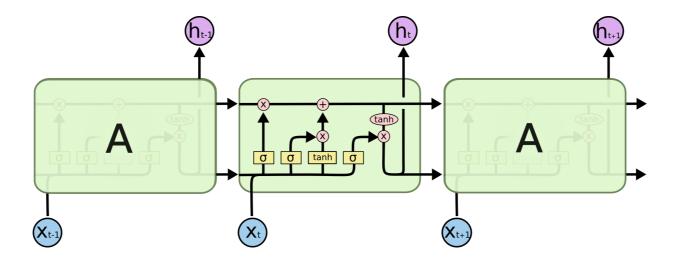


Image source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM Pre-Processing

Smoothing Transformation

 Calculate log(revenue+1) and then de-mean data within each of training and validation sets

Walk-Forward Split

- Step forward into time for training vs. validation to ensure no data leakage
- Do this iteratively for several 15time-step-sized windows within the data

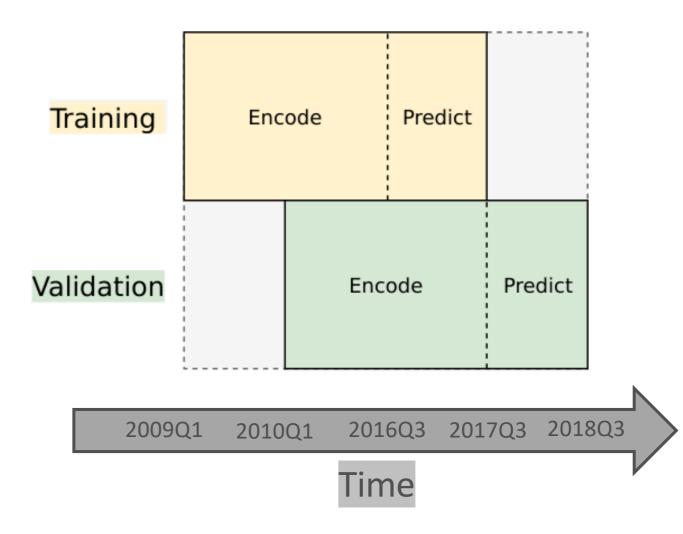


Image source: https://github.com/Arturus/kaggle-web-traffic/blob/master/how_it_works.md

LSTM Architecture

- Seq2Seq model
 - LSTM encoder: process revenue and return internal state
 - LSTM decoder: use previous time step's actual data and internal LSTM encoder states to generate next output
 - Adam optimizer on MAE
 - Train for each rolling window, e.g. fit model at first 15 time steps; step forward 4 steps and repeat
- Inference
 - Teacher forcing during training (feed predicted rather than true value as next input)
 - Decode and inverse smoothing transformation for the last 4 quarters of data

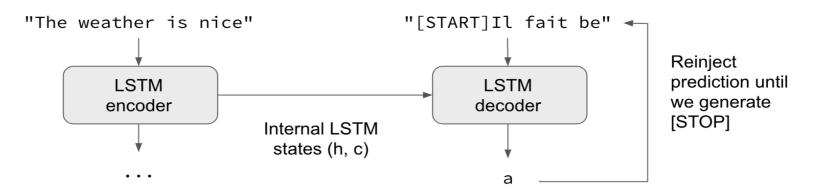
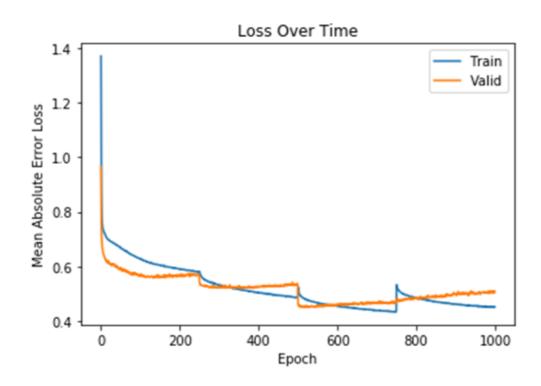


Image source: https://blog.keras.io/a-ten-minute-introduction-to-sequence-to-sequence-learning-in-keras.html

Basic LSTM: Example Loss Curve

- Training and validation loss curves as model is fit iteratively through rolling windows of predefined step size
- Notice gradual loss as model uses previous weights to warm-start rather than fitting from the scratch
- Significantly improved from vanilla LSTM model, which overfits



LSTM with Categorical Variables

	Group Sul	bRigionName Cus	ton/Subsegmen (CurtomSRSD	009-01- 01 0:00:00	2009-04- 01 00:00:00	2009-07- 01 00:00:00	2009-10- 01 00:00:00	2010-01- 01 00:00:00
0	Argentina . Commercial Enterprise . Developer	Argentina	Commercial Enterprise	Developer Tools					
1	Argentina . Commercial Enterprise . Dynamics O	Argentina	Commercial Enterprise	Dynamics OnPrem					
		One-	Hot Vecto	ors					

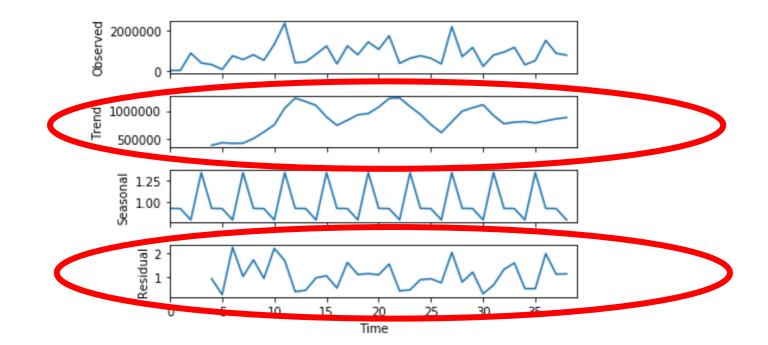
LSTM with Seasonality

Seasonal Decomposition

- Use multiplicative seasonal decomposition (more revenue \rightarrow more seasonality observed)
- Requires all values to be strictly positive; hence, 0 values are substituted as ones
- Resulting components: trend, seasonal, and residual

• Pre-processing

- Calculate trend*residual values in training and validation sets; use trend*residual as training input
- Smoothing Transformation: take log(revenue+1) and de-mean using de-seasonalized training data values



LSTM with Curriculum Learning

- Cleverly changing the order of inputs to a model can improve results
- Example: NLP
 - Intuition: shorter sentences are easier to learn than longer sentences
 - Bootstrapping via iterated learning of increasingly longer sentences; requires no initialization
- Baby Steps algorithm on model M, training data D, and curriculum C

Algorithm 2 Baby Steps Curriculum

1:	procedure BS-CURRICULUM($M, \mathcal{D}, \mathcal{C}$)
2:	
3:	$\{\mathcal{D}^1, \mathcal{D}^2,, \mathcal{D}^k\} = \mathcal{D}'$ where $\mathcal{C}(d_a) < \mathcal{C}(d_b) \ d_a \in \mathcal{C}(d_b)$
	$D^i, d_b \in D^j, \forall i < j$
4:	$\mathcal{D}^{train} = \emptyset$
5:	for $s = 1k$ do
6:	$\mathcal{D}^{train} = \mathcal{D}^{train} \cup \mathcal{D}^{s}$
7:	while not converged for p epochs do
8:	train (M, \mathcal{D}^{train})
9:	end while
10:	end for
11:	end procedure

LSTM with Curriculum Learning

- What curriculum to use?
 - Sort metric: residual trend (from STL) weighted by segment revenue for each datarow
 - Sort order: train in increasing order of residual
 - Create k batches from the sorted datarows, in sort order
 - Within each batch, shuffle the datarows during training

```
for s = 1...k do

\mathcal{D}^{train} = \mathcal{D}^{train} \cup \mathcal{D}^{s}

while not converged for p epochs do

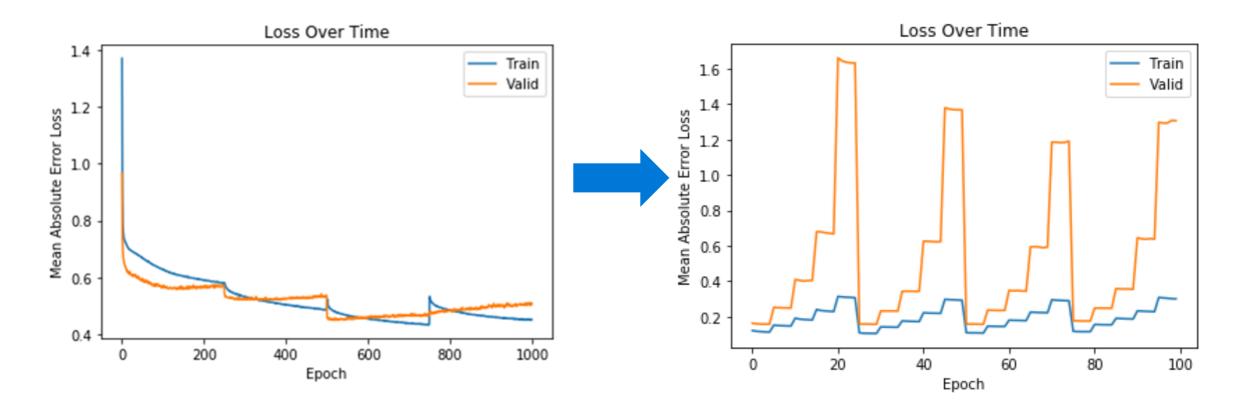
train(M, \mathcal{D}^{train})
```

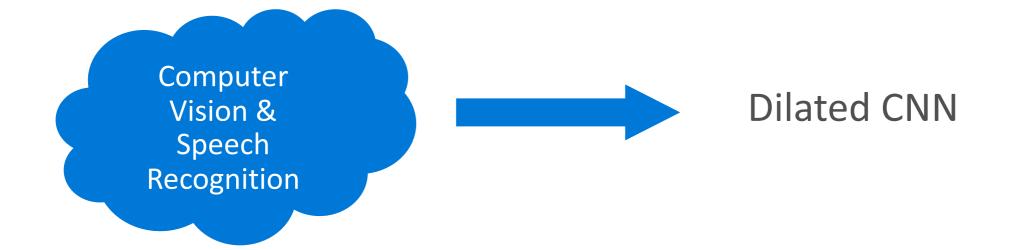
- Within each iteration of the rolling window process
 - Continue warm-start by iteratively adding one batch at a time to the training data
 - Each rolling window iteration is run p times, where p is the # epochs chosen to reach convergence

LSTM Example Loss Curves

Only Rolling Windows

Rolling Windows + Curriculum Learning





Variants of Dilated CNN

- 1. Basic Dilated CNN
- 2. Dilated CNN with Categorical Indicators
- 3. Dilated CNN with Curriculum Learning

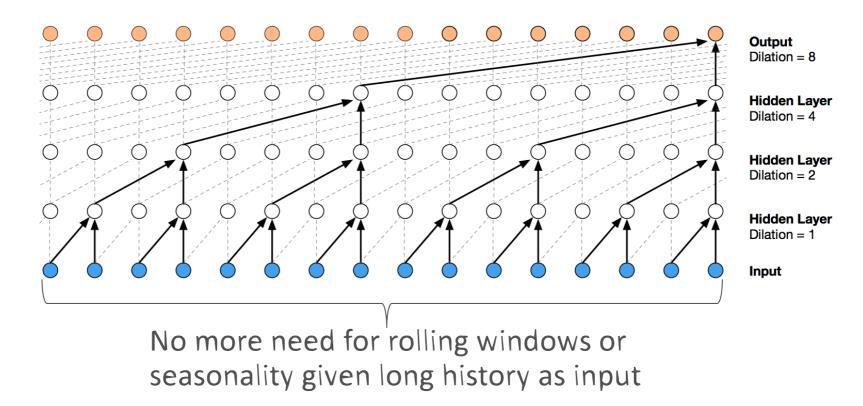


Image source: https://deepmind.com/blog/wavenet-generative-model-raw-audio/

Basic Dilated CNN

Smoothing Transformation

• Take log(revenue+1) and de-mean using the training data values

Dilated CNN Model

• Use 1D Convolutions in each of 10 dilated convolutional layers:

6 filters of width 2 per layer; using a small number of dilated causal convolutional layers can connect an exponential number (2^10) of input values for the output

- Use two fully connected layers to get final output: Dense(128) with ReLU activation; Dense(1)
- Adam optimizer on MAE
- Inference
 - Teacher forcing during training; predict the last 4 quarters of data iteratively; append each to history

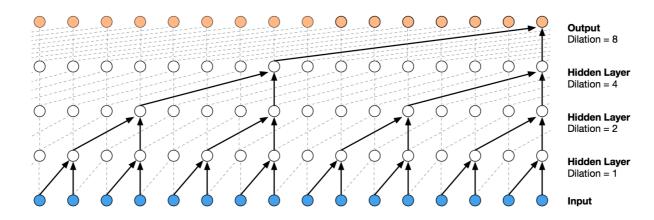
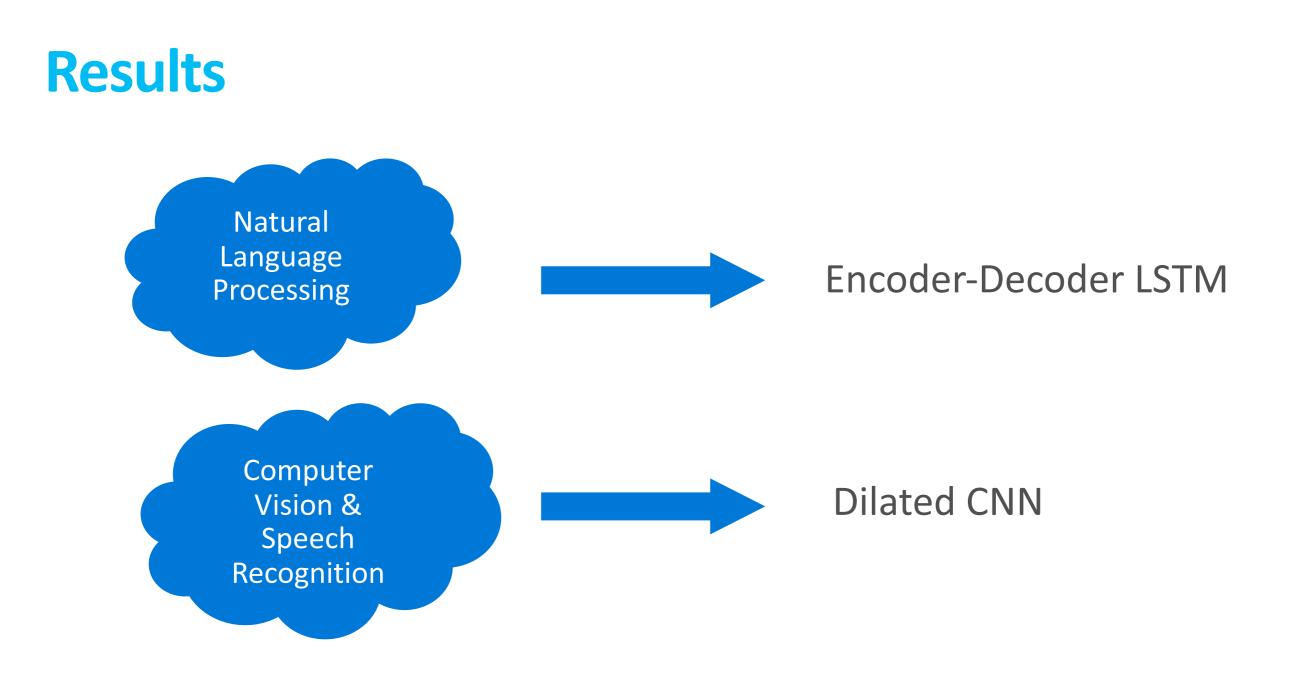


Image source: <u>https://deepmind.com/blog/wavenet-generative-model-raw-audio/</u>



Model Evaluation Metrics

• Test data

• Models were evaluated using the last four quarters' data as the test set (FY17Q4 to 18Q3)

Randomness introduced by DNN models

• We run each experiment 30 times and ensemble the results to reduce inherent variance

• Error evaluation

- MAPE is calculated by considering the average of the forecasts across runs as the final forecast, and comparing that to actual observed revenue for the corresponding quarter
- Worldwide forecast = sum of forecasts for all rows
- Segment forecast = sum of all SRSD forecasts that fall into the segment
- Compare Worldwide and Segment-level MAPEs to Microsoft baseline MAPEs (actual MAPEs excluded for privacy reasons)

LSTM + Curriculum Learning Improves Accuracy

Table 1. World-wide test error reduction percentages of DNN models over previous

 Microsoft production baseline.

Model	Percent MAPE Improvement
Basic LSTM	1.9%
LSTM with Categorical Indicators	18.2%
LSTM with Seasonality	-5.1%
LSTM with Curriculum Learning	27.0%
Basic DCNN	-0.7%
DCNN with Categorical Indicators	12.1%
DCNN with Curriculum Learning	$\mathbf{22.6\%}$

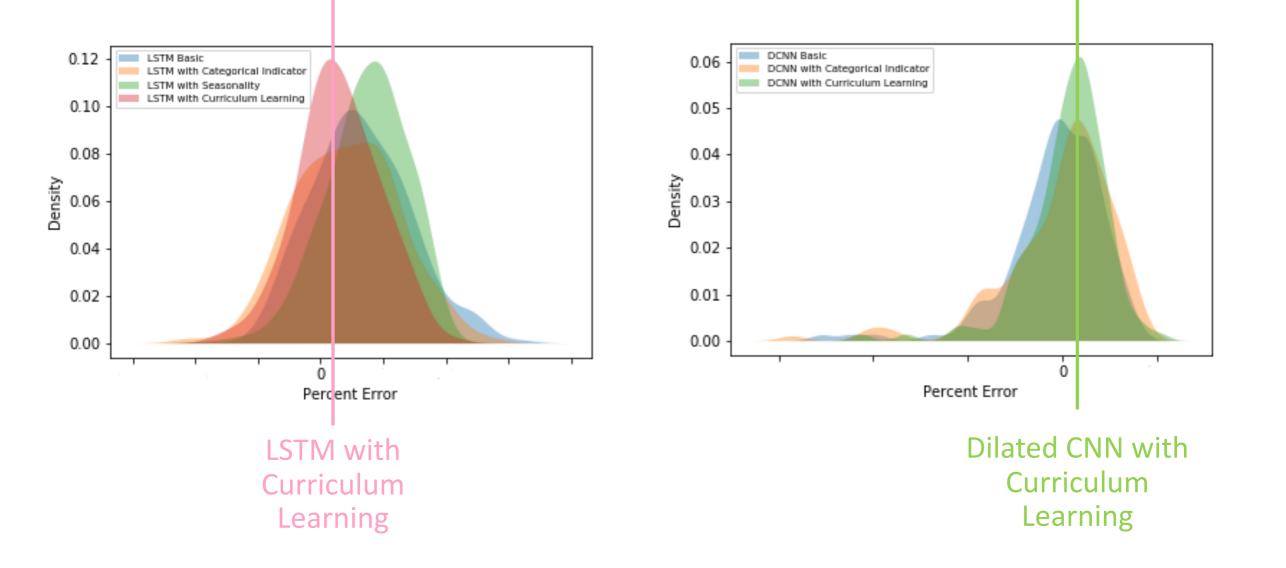
Table 2. LSTM Model Segment-level MAPE reduction percentages (%) over previousMicrosoft production baseline (positive % corresponds to error reduction).

Segment	Basic	Model (a) +	Model(b) +	Model(c) +
	\mathbf{LSTM}	Categorical Indicators	Seasonality	Curriculum Learning
	(Model (a))	(Model (b))	(Model (c))	(Model(d))
1	25.5	22.0	53.4	70.0
2	-47.9	-34.3	-23.0	-0.8
3	7.65	-5.8	26.0	20.3
4	14.2	30.3	12.0	27.4
5	-15.4	-13.2	-11.8	-25.9
6	-79.2	-60.3	-110.1	-12.4
7	34.7	30.1	31.0	11.5
8	17.9	15.5	57.2	61.4
Revenue-	10.3	10.3	21.3	30.0
weighted				
Average				

Table 3. DCNN Model Segment-level MAPE reduction percentages (%) over previous Microsoft production baseline (positive % corresponds to error reduction).

Segment	Basic	Model (a) +	Model(b) +	
	DCNN	Categorical Indicators	Curriculum Learning	
	(Model (a))	(Model (b))	(Model (c))	
1	24.8	44.0	34.2	
2	-0.2	-19.5	-19.5	
3	-8.7	28.9	39.9	
4	35.5	35.4	22.6	
5	45.4	58.4	26.8	
6	-258.2	-263.2	-80.5	
7	27.0	28.7	29.4	
8	33.8	35.5	24.9	
Revenue-	-3.1	4.5	16.2	
weighted				
Average				

Worldwide MAPE Densities: Low Bias & Variance



Conclusions

• Curriculum learning is a powerful technique to explore

- Applying a good sorting metric to NN inputs can improve results drastically
- In practice, run times are significantly faster, especially on medium-sized data
- Encoder-decoder LSTMs and Dilated CNNs can applied to time series data
 - Models are fast and accurate; do not overfit

• Seasonal decomposition can be a useful pre-processing tool

• Especially for financial data with steady seasonality

Future Work

Curriculum learning

- Further experimentation of different sorting orders
- Ensembling across different orders to yield better segment-level MAPEs
- Incorporate batch metrics into hyperparameter-tuning packages

Categorical variables for segmentation

- Try changing sample weights
- Exploit hierarchical nature of categories better

• Dilated LSTMs

• Would serve as an in-between of encoder/decoder LSTMs and dilated CNNs

Thank you. Questions?