Representation Learning in Graphs for Credit Card Fraud Prediction

Rafaël Van Belle, Sandra Mitrovic, Jochen De Weerdt Kunner / Research Centre for Information Systems Engineering, KU Leuven

MIDAS Workshop@ECMLPKDD, 16 September 2019

Credit: Sofia Varano

Outline

- Introduction
- Methodology: inductive representation learning for fraud detection
- Experiments & Results
- Conclusion

Introduction

\$4.57 billion in 2016, up 34 percent wrt 2015 (Federal Reserve Payments Study)

Value of fraudulent transactions with SEPA cards:

€1.8 billion in 2016

Application fraud

Behavioral Fraud

Every transaction leaves a **Data-Trail** in credit card transaction logs.

⇒ **Data mining and machine learning** can be applied to help detect fraud.

Supervised Fraud Detection Techniques:

- Logistic Regression
- Support Vector Machines
- Random Forests
- Neural Networks
- ⇒ Often relying on **customer profiling** based on historical spending behaviour
 - Tedious, intricate feature engineering
 - Relational features are ignored
 - Lack of methodology
 - Case-dependent

RQ1: Can relational/structural information from the transaction network be captured **holistically** with graph representation learning avoiding hand-crafted featurization?

RQ2: What is the impact of alterations to the transaction network architecture in the form of **artificial nodes** on predictive performance?

RQ3: Can existing transductive representational learners be adapted to generalize to **unseen graph elements** such that they work incrementally without full retraining.

7

Methodology: Inductive Representation Learning for Fraud Detection

Graph Structure

Bipartite Graph

Tripartite Graph

Tripartite Graph with Artificial Nodes

- Matrix-factorization (e.g. GraRep, HOPE)
- Random walk-based (e.g. Deepwalk, Node2Vec)
- Deep learning-based (e.g. SDNE, DNGR)

Random Walk-Based Node Embedding

- Deepwalk (Perrozzi et al., 2014)
- Inspired by Word2Vec model (Natural Language Processing)
- Shallow neural network with 'fake' learning task

Inductive representation learning

- DeepWalk = transductive \Rightarrow cannot generalize to unseen nodes
- Continuous stream of new transactions = new unseen nodes

Retraining DeepWalk?

- Time demanding
- Computationally expensive
- Vector space is not preserved
- \Rightarrow Fast and efficient inductive solution?

GraphSAGE

- Hamilton et al. (2017)
- Iterative aggregation of neighbourhood attribute information
- Deep learning
- Extends GCN

Pooling

- Inductive extension for shallow embedding methods.
- Pooling of neighbour embedding information
- Fast and memory efficient

13

Experiments & Results

Dataset

- # of transactions: **3.2 Mio**
- # of cardholders: 1.2 Mio
- # of merchants: **130K**
- # of fraudulent transactions: 13K
- Fraud rate:

TX	Cardholder	Merchant	Cat.	Country	Amount	Timestamp	Fraud
t0	AC83FD	m000174	4816	USA	7.37	2013-10-01 01:00:06	False
t1	1CD 10 E	m207001	5735	LUX	6.25	2013-10-01 01:00:08	False
t2	4ECA55	m003020	7523	CAN	7.18	2013-10-01 01:00:08	False
t3	74186F	m800002	4812	USA	154.93	2013-10-01 01:00:09	True
t4	8777F3	m000102	7399	BEL	15.00	2013-10-01 01:00:10	False

Experimental design

		AUC		F1		Lift	
Technique		avg	max	avg	max	avg	max
Pagerank		0.62 ± 0.10	0.71	0.16 ± 0.08	0.39	1.25 ± 0.56	2.66
Graphsage pool	mean-	0.63 ± 0.05	0.64	0.04 ± 0.05	0.10	2.01 ± 0.84	2.59
Graphsage pool	max-	0.71 ± 0.05	0.73	0.05 ± 0.05	0.13	2.76 ± 0.97	3.82
Pooling-		0.76 ± 0.03	0.80	0.05 ± 0.05	0.23	2.91 ± 0.93	<u>4.89</u>
Pooling+		$\underline{0.77\pm0.04}$	<u>0.83</u>	$\underline{0.18\pm0.12}$	<u>0.40</u>	$\underline{3.83\pm0.57}$	4.53

Results Nemenyi Test

Critical value: 62.50

Technique + Sampling + Clas- sifier	pooling- RO XGB	pooling+ RO XGB	pooling+ SMT XGB	pooling+ ADS XGB
Pagerank US SVM	56.6	59.4	61.6	63.0
Pagerank US LR	62.2	65.0	67.2	68.6
Pagerank ADS LR	59.8	62.6	64.8	66.2
Pagerank RO RF	62.7	65.5	67.7	69.1
Pagerank SMOTE RF	63.3	66.1	68.3	69.7
Graphsage meanpool RO RF	58.0	60.8	63.0	64.4
Graphsage meanpool US LR	56.6	59.4	61.6	63.0
Graphsage meanpool SMT XGB	56.2	59.0	61.2	62.6

KU LEUVEN

(F)

Conclusion

- RQ1: can representation learning be applied for fraud detection \rightarrow YES
- RQ2: what is the impact of artificial nodes → artificial nodes improved the predictive performance.
- RQ3: how to generalize to unseen nodes → inductive pooling operator outperformed state-of-the-art inductive framework GraphSAGE.

Future research

- Take into consideration node type heterogeneity.
- Theoretical underpinning of the effect of artificial nodes.
- Take financial performance measures into account.

