Convolutional Neural Networks, image recognition and financial time series forecasting ECML-PKDD 2019 Workshop MIDAS Sept. 16, 2019 - Wurzburg, Germany

Argimiro Arratia and Eduardo Sepúlveda

Universitat Politècnica de Catalunya, SPAIN

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Motivation

- Convolutional Neural Networks (CNN) are best known as good image classifiers
- CNN has recently been used for financial forecasting
- Our goal: to show that by converting financial information into images and feeding these financial-image representation to the CNN, it results in an improvement in classification.

Methods and Data I

Recurrence Plots [Eckman et al 1987]

Formalized as a matrix $\mathcal{R} = (R(i, j))$ where each entry

$$R(i,j) = \Theta(\varepsilon - ||\vec{x}(i) - \vec{x}(j)||), \quad \vec{x}(\cdot) \in \mathbf{R}^m, i, j = 1 \dots N \quad (1)$$

where N is the number of states, $\vec{x}(i)$ is the subsequence observed at time i, $|| \cdot ||$ is a norm, ε is a threshold for closeness and Θ is the Heaviside function ($\Theta(z) = 0$, if z < 0, or 1 otherwise).

Thus, if the *m*-dimensional trajectory of the time series at time *i* is close (w.r.to $|| \cdot ||$) to the subsequence observed at time *j*, there will be a 1 (e.g. yellow square) at entry (i, j) of \mathcal{R} ; otherwise, the value is 0 (a dark purple square).

Methods and Data II

In our experiments we use the pairwise Euclidean distance for the RP norm $||\cdot||.$

Figure: RP for S&P500

Convolutional Neural Networks (CNN) I

CNN are made up of hidden nodes (or neurons), distributed through various layers, with learnable weights and biases. Each neuron receives several inputs and computes a weighted sum over them, and then passes the result through an activation function which gives an output.

Popular choices for activation functions are:

- logistic sigmoid: $\sigma(x) = 1/(1 + \exp(-x))$,
- hyperbolic tangent: tanh(x) = 2/(1 + exp(-2x)) 1,

• rectified linear units: ReLu, $R(x) = \max(0, x)$.

Convolutional Neural Networks (CNN) II

Figure: Basic functioning of 1D-CNN

Convolutional Neural Networks (CNN) III

Figure: Basic functioning of 2D-CNN

The network's parameters are tuned by minimizing some loss function.

As opposed to regular neural networks, nodes in a CNN are not fully connected but only connected to a local region in the inputs. This local connectivity is attained by using convolutions instead of weighted sums.

Convolutional Neural Networks (CNN) IV

The dimension of the convolution operator accommodates to the dimension of the data.

For one-dimensional input, e.g. time series

 $x = \{x(t) : t = 1, ..., N\}$, one-dimensional (1D) convolutions with kernels w_h , for h = 1, ..., M with M < N, are formally defined as

$$s(t,h) = (w_h \star x)(t) = \sum_{n=-\infty}^{\infty} x(n)w_h(t-n)$$
(2)

For two-dimensional input, e.g. images $(I(i,j))_{1 \le i,j \le N}$, the appropriate convolutions must be two-dimensional (2D) on kernel matrices $(K_h(i,j))_{1 \le i,j \le M}$:

$$s(i,j,h) = (K_h \star I)(i,j) = \sum_{m} \sum_{n} I(i-m,j-n)K_h(m,n) \quad (3)$$

Convolutional Neural Networks (CNN) V

We build two types of CNN by sequential modeling using the Keras library in Python.

Conv1D: Consists of one convolutional layer made of one-dimensional convolutions with kernels of size 2 and 64 nodes. Inputs are numeric arrays. The activation function we use is the **ReLU**, which works quite well in practice and is less computationally expensive than **tanh** and **sigmoid** because it involves simpler mathematical operations. The Pooling layer will be produced with Max pooling.

Convolutional Neural Networks (CNN) VI

Conv2D + RP: For this model the inputs (arrays of numbers) are first pre-processed with the recurrence plot (RP) method to produce corresponding images (matrices of 0 and 1). Then follows a convolutional layer made of two-dimensional convolutions with kernels of size 2 × 2 and 64 nodes, a ReLu activation function, and a Max pooling layer.

Datasets I

S&P 500 index. Target: the direction of monthly price of S&P 500 with reference to the risk-free interest rate (i.e. the sign of S&P 500 equity premium (GSPCep)).

$$GSPCep(t) = \log\left(\frac{P(t) + D12(t)}{P(t-1)}\right) - \log(r(t) + 1)$$

where P(t) and D12(t) are, respectively, the monthly price and the 12-month moving sums of dividends paid on the S&P 500 index at time t, and r(t) is the interest rate of the three months U.S. Treasury bill. Features: past history of the equity premium and its variance, up to three lags.

Datasets II

US Banks. Target: categorical taking value 1 to indicate a bankrupt entity, or 0 otherwise.
Features: arrays with 106 exploratory variables pertaining to financial indicators drawn from quarterly financial reports of U.S. banks. There are 5152 of these arrays, each representing the financial situation of a bank (in 1992-2017). Each bank has at least 8 quarter periods of financial data reporting. This financial information have been retrieved from the Federal Deposit Insurance Corporation (FDIC).

Experiments and results I

Experiments consist in comparing the CNN's performance with two different processing of its data inputs.

- consists on feeding the 1-D numerical data directly as input to our CNN.
- 2 consists on first pre-processing the numerical data into images using the Recurrence Plot technique.

We compare the performance of the models with respect to: accuracy in classification, loss in training, AUC, Matthews Correlation and 10-fold cross-validation.

We do experiments in two different financial scenarios:
1) to predict direction of price of the S&P 500 index;
2) to predict the possibility of bankruptcy in a set of U.S. banks.

Experiments and results II

Figure: RP images of S&P 500 data inputs with target 0 (price down) or 1 (price up)

Experiments and results III

Figure: RP images of U.S. bank data with target 1 (bankrupt) or 0 (non-bankrupt)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Experiments and results IV

We repeat each experiment 100 times and report below average results for each CNN model

Table: Performance of CNN without/with RP for S&P500 price prediction

	Acc	Loss	10-fold CV	AUC	Matthews cor.
Conv1D	0.52	5.75	$61.1\%~(\pm~4.16\%)$	0.65	-0.102
Conv2D + RP	0.63	2.69	63.22% (± 0.93%)	0.66	-0.0026

Table: Performance of CNN without/with RP for Bankruptcy Detection

	Acc	Loss	10-fold CV	AUC	Matthews cor.
Conv1D	0.82	3.27	$58.91\%~(\pm~17.98\%)$	0.72	0.42
Conv2D + RP	0.94	1.01	93.75% (± 0.07%)	0.83	0.67

Experiments and results V

The improvement in accuracy, AUC, Matthews correlation and decrease in loss are significant when pre-processing data with RP before feeding it to the 2D Convolutional Neural Network.

Conclusions

- We have shown that by making a previous processing of the input by recurrence plot transformation of our numerical data to images, we obtain better classification results as measured by five different metrics of classification performance.
- We have used a standard norm (Euclidean norm) for the RPs. Other norms are possible, in particular ones more suitable for capturing similarities among financial time series, like, for example, a correlation based metric. It would be interesting to see the difference in performance of Conv2D+RP model under different norms underlying the definition of the RP method.

Convolutional Neural Networks, image recognition and financial time series forecasting ECML-PKDD 2019 Workshop MIDAS Sept. 16, 2019 - Wurzburg, Germany

Argimiro Arratia and Eduardo Sepúlveda

Universitat Politècnica de Catalunya, SPAIN

Questions?