Multi-step prediction of financial asset return probability density function using parsimonious autoregressive sequential model

Xiangru Fan, Xiaoqian Wei, Di Wang, Wen Zhang and Qi Wu

CityU-JD digits joint lab

Outlines

- Research background
- GARCH models
- Our algorithm
- Segregated BPTT approximate gradient training algorithm
- Result and conclusion

GARCH family of models

$$r_t = \mu_t + \varepsilon_t, \qquad \varepsilon_t | \psi_{t-1} \sim \mathcal{N}(0, \sigma_t^2),$$
$$\sigma_t^2 = \omega + \alpha_1 \varepsilon_{t-1}^2 + \dots + \alpha_q \varepsilon_{t-q}^2 + \beta_1 \sigma_{t-1}^2 + \dots + \beta_p \sigma_{t-p}^2,$$

- r_t is asset return at time t
- μ_t is predicted mean
- ϵ_t is the residue
- σ_t^2 is the predicted volatility

In stock/forex market, GARCH family of models can describe the conditional volatility given past daily price change of the asset. Investor may choose not to invest his/her money to the financial asset when predicted volatility is large. GARCH model can be easily extended to conduct multi-step prediction

$$\sigma_t^2 = w + \alpha E_t \left[\epsilon_{t+h-1}^2 \right] + \beta E \left[\sigma_{t+h-1}^2 \right]$$

- r_t is asset return at time t
- μ_t is predicted mean
- ϵ_t is the residue
- σ_t^2 is the predicted volatility
- *h* is the prediction horizon

The analytical solution for multi-step GARCH prediction uses expected value of ϵ_{t+h-1}^2 in place of ϵ_{t+h-1}^2 , Which is equal to σ_{t+h-1}^2

$$\sigma_t^2 = w + (\alpha + \beta) E \left[\sigma_{t+h-1}^2 \right] \cdot \alpha \mu_{t+h-1}$$

Multi-step volatility prediction using deep learning

Unlike GARCH, deep learning can exploit more complex and richer features:

$$oldsymbol{x}_1,oldsymbol{x}_2,...,oldsymbol{x}_L = egin{bmatrix} r_1 \ r_1^2 \ r_1^3 \ r_1^4 \ r_1^2 \end{bmatrix}, egin{bmatrix} r_2 \ r_2^2 \ r_2^2 \ r_2^3 \ r_2^4 \ r_2^2 \end{bmatrix},...,egin{bmatrix} r_L \ r_L \ r_L^2 \ r_L^3 \ r_L^4 \ r_L^4 \end{bmatrix}$$

GRU is used for feature extraction and then a fully connected layer output the predicted mean and volatility :

$$\boldsymbol{h} = \mathbf{GRU}(\boldsymbol{x}_1, \boldsymbol{x}_2, ..., \boldsymbol{x}_L; \boldsymbol{\Theta})$$

$$[\mu_{L+1}, \sigma_{L+1}]^T = \phi(\boldsymbol{W}_1 \boldsymbol{h} + \boldsymbol{b}_1)$$

Multi-step volatility prediction using deep learning

Similar to GARCH, LSTM based multi-step prediction of volatility can also be rendered multi-step prediction

(12)

(13)

(14)

(15)

MS-DR

$$h = \mathbf{GRU}(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, ..., \boldsymbol{x}_{L}; \Theta)$$
$$[\mu_{L+1}, \sigma_{L+1}]^{T} = \phi(\boldsymbol{W}_{1}\boldsymbol{h} + \boldsymbol{b}_{1})$$
$$[\mu_{L+2}, \sigma_{L+2}]^{T} = \phi(\boldsymbol{W}_{2}\boldsymbol{h} + \boldsymbol{b}_{2})$$
$$[\mu_{L+3}, \sigma_{L+3}]^{T} = \phi(\boldsymbol{W}_{3}\boldsymbol{h} + \boldsymbol{b}_{3})$$

Non-autoregressive version of the LSTM-based Volatility prediction model

PA-MS-DR

$$[\mu_{L+1}, \sigma_{L+1}]^{T} = \phi(\mathbf{W}\mathbf{GRU}(\mathbf{x}_{1}, \mathbf{x}_{2}, ..., \mathbf{x}_{L}) + \mathbf{b})$$

$$\begin{bmatrix} f_{E(r)}([\mu_{L+1}, \sigma_{L+1}]^{T}) \\ f_{E(r^{2})}([\mu_{L+1}, \sigma_{L+1}]^{T}) \end{bmatrix}$$
(22)

$$[\mu_{L+2}, \sigma_{L+2}]^{T} = \phi(\mathbf{W}\mathbf{GRU}(\mathbf{x}_{1}, \mathbf{x}_{2}, ..., \mathbf{x}_{L+1}) + \mathbf{b})$$

$$\begin{bmatrix} f_{E(r)}([\mu_{L+2}, \sigma_{L+2}]^{T}) \\ f_{E(r)}([\mu_{L+2}, \sigma_{L+2}]^{T}) \end{bmatrix}$$
(28)
$$\begin{bmatrix} f_{E(r)}([\mu_{L+2}, \sigma_{L+2}]^{T}) \\ f_{E(r)}([\mu_{L+2}, \sigma_{L+2}]^{T}) \end{bmatrix}$$

$$x_{L+2} = \begin{bmatrix} f_{E(r^2)}([\mu_{L+2}, \sigma_{L+2}]^T) \\ f_{E(r^3)}([\mu_{L+2}, \sigma_{L+2}]^T) \\ f_{E(r^4)}([\mu_{L+2}, \sigma_{L+2}]^T) \end{bmatrix}$$
(30)

$$[\mu_{L+3}, \sigma_{L+3}]^T = \phi(\mathbf{W}\mathbf{GRU}(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_{L+2}) + \mathbf{b})$$
(31)

Autoregressive version of the LSTM-based Volatility prediction model

t-distribution version of the model uses numerical integration to calculate $E(r^1), E(r^2), E(r^3)$ and $E(r^4)$, while analytical solution for them is aviable for normal distribution version of the model

Inspirations of this training algorithm

In JDD, we frequently encounter long-term loans with 12 or 24 monthly installments, So, we invented this recursive prediction model to mode I the dynamics of loan performance during its lifetime.

The specific algorithm for training this algorithm is then migrated to the stockvolatility prediction problem, as described in next slides.

Segregated back-propagation training algorithm

k +=1

Normal back-propagation algorithm

🕽 京东 数 科

Segregated back-propagation training algorithm

k +=1

The new training method omitted back propagate through time process, Hence greatly improved training speed

Proof can be found at https://github.com/imo1991/appendix4papers

Result of the model

	S&P 500	NASDAQ 100	Nikkei 225	EUR-USD	JPY-USD
AR-GJR-GARCH-t	1.3819^{+}	1.6078 †	1.5634	0.6020	0.5212^{\dagger}
GJR- $GARCH$ - t	1.3711	1.6033^{\dagger}	1.5599	0.6038	0.5176^{+}
GARCH-t	1.3668	1.6052^{+}	1.5609	0.6046	0.5183^{\dagger}
PA-MS-DR-t	1.2165	1.4924	1.5057†	$0.6008 \star$	0.4950^{+}
MS-DR-t	1.2209	1.4971	1.5223^{+}	0.6094	0.4983^{\dagger}
AR-GJR-GARCH	$1.5318 \star$	1.6838^{\dagger}	1.6152	0.5897	$0.4818 \star \dagger$
GJR-GARCH	$1.5058 \star$	$1.6805^{\dagger}_{1.600}$	1.5979	$0.5925 \star$	0.4839
GARCH	$1.5086 \star$	1.6682^{\dagger}	1.6050	$0.5924 \star$	0.4840
PA-MS-DR	$1.2504 \star$	1.5360	1.5189^{+}	0.6023	0.4604 †
MS-DR	1.2564 †	1.5611	1.5403	0.6099	0.4740^{+}

Table 2. The negative log-likelihood of the test sets of stock indexes S& P 500, NAS-DAQ 100 and Nikkei 225 as well as exchange rate EUR-USD and JPY-USD. The result is the mean of the negative log-likelihood for 5 future days. suffix-t indicate using t-distribution. The bolded letters indicate the lowest value. i.e. the best result. The threshold for rejecting the null hypothesis with 90% confidence level is 2.7060 for Christophersen's independence test. \star represents the threshold is exceeded. The threshold for rejecting the null hypothesis with 95% confidence level is 3.8415 for Kupiec's proportion of failures coverage test. \dagger sign indicates the threshold is exceeded.

