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GARCH family of models

• 𝑟𝑟𝑡𝑡 is asset return at time t
• 𝜇𝜇𝑡𝑡 is predicted mean
• 𝜖𝜖𝑡𝑡 is the residue
• 𝜎𝜎𝑡𝑡2is the predicted volatility

In stock/forex market, GARCH family of models can describe the 
conditional volatility given past daily price change of the asset.
Investor may choose not to invest his/her money to the financial asset 
when predicted volatility is large.  



GARCH model multi-step prediction

• 𝑟𝑟𝑡𝑡 is asset return at time t
• 𝜇𝜇𝑡𝑡 is predicted mean
• 𝜖𝜖𝑡𝑡 is the residue
• 𝜎𝜎𝑡𝑡2is the predicted volatility
• h is the prediction horizon

𝜎𝜎𝑡𝑡2 = 𝑤𝑤 + 𝛼𝛼𝐸𝐸𝑡𝑡 𝜖𝜖𝑡𝑡+ℎ−12 + 𝛽𝛽𝐸𝐸 𝜎𝜎𝑡𝑡+ℎ−12

The analytical solution for multi-step GARCH prediction uses expected value of 𝜖𝜖𝑡𝑡+ℎ−12 in place of 𝜖𝜖𝑡𝑡+ℎ−12 , 
Which is equal to  𝜎𝜎𝑡𝑡+ℎ−12

𝜎𝜎𝑡𝑡2 = 𝑤𝑤 + (𝛼𝛼 + 𝛽𝛽)𝐸𝐸 𝜎𝜎𝑡𝑡+ℎ−12 -𝛼𝛼𝜇𝜇𝑡𝑡+ℎ−1

GARCH model can be easily extended to conduct multi-step prediction



Multi-step volatility prediction using deep learning

Unlike GARCH, deep learning can exploit more complex and richer 
features:

GRU is used for feature extraction and then a fully connected layer 
output the predicted mean and volatility :



Multi-step volatility prediction using deep learning
Similar to GARCH, LSTM based multi-step prediction of volatility can also be rendered multi-step prediction

Non-autoregressive version of the LSTM-based 
Volatility prediction model

Autoregressive version of the LSTM-based 
Volatility prediction model

t-distribution version of the model uses numerical integration to  calculate 
𝐸𝐸 𝑟𝑟1 , 𝐸𝐸 𝑟𝑟2 , 𝐸𝐸 𝑟𝑟3 and 𝐸𝐸 𝑟𝑟4 , while analytical solution for them is aviable for 
normal distribution version of the model
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Inspirations of this training algorithm
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In JDD, we frequently encounter long-term loans with 12 or 24 monthly installments, 
So, we invented this recursive prediction model to mode
l the dynamics of loan performance during its lifetime.

The specific algorithm for training this algorithm is then migrated to the stock-
volatility prediction problem, as described in next slides.



8

Segregated back-propagation training algorithm
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Forward Propagation

Backward Propagation

k +=1

Approximate Backward
Propagation

The new training method omitted back propagate through time process,
Hence greatly improved training speed
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Segregated back-propagation training algorithm

Proof can be found at https://github.com/imo1991/appendix4papers



10

Result of the model
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