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CFEs estimate that

MOti V atiOn organizations LOSE
0/ of revenue
5 /D to FRAUD

each year

* Fraud detection: detecting anomalies in
a large, unlabeled dataset

* Hyperparameters need to be
optimized

* Solution to mitigate lack of labels for
validation and HP optimization:

Multi-Agent-based data generation
including labels
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* Occupational Fraud Detection
* ERP Data simulation through Multi-Agent Systems (MAS)

* Fraud Detection with MAS Data
* Data Generation
* Experiments
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Occupational fraud is formally defined as the use of one’s
occupation for personal enrichment through the deliberate
misuse or misapplication of the employing organization’s
resources or assets.

— ACFE 2022
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* Asset missappropriation: Larceny 1

Material w I(Automatic)w =( Orders
planningJ L order J Lreceived
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* Asset missappropriation: Larceny 1

: ________________________________ { ERP S-Ystem } ................................

1 1
1 1
1 | 1
1 | 1
1 1 1
1 1 1
v v v

Material W I(Automatic)w steal f Orders

planningJ L order J Lreceived
Raised lowered
amounts materials
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Data availability
* No real company datasets public

* Especially no real fraud cases

Expensive labeling
* No labeled real data available
* Requires auditing experts
* Fraud cases are rare

* No guarantees for representative datasets
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Data availability

* No real company datasets public

* Especially no real fraud cases
Open ERP System Data For Occupational Fraud
Detection

Julian Tritscher!, Fabian Gwinner?, Daniel Schlér!, Anna Krause!, and
Andreas Hotho!

. [ ] [ ] o ! University of Wiirzburg, Am Hubland, 97074 Wiirzburg, Germany
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Abstract. Recent estimates report that companies lose 5% of their rev-

* Training simulation in a real ERP system

* Simulated cereal production company run by
research participants

* Fraud cases committed directly in the ERP A
S y S‘I'e m Keywords: Data generation - Fraud detection - SAP.

1 Introduction

public to allow for open development and comparison of fraud detection

* Machine-learning-ready datasets

Tritscher, Julian, et al. "Open ERP system data for occupational

* Usmg financial qccoun’rlng tables fraud detection." arXiv preprint arXiv:2206.04460 (2022).

* Multiple datasets with 1 fiscal year each
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* Modeling business processes is complex

* User interaction is expensive

* Extension (e.g., by new fraud cases) requires reiteration of the whole
process

Possible solution: Replace users in this "simulation” with agents

=> Simulation with Multi Agent Systems (MAS)
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ERP & MAS

Category

* Existing research that models companies in MAS
* Can model business processes
* Can be extended to include fraud

* This paper
* Model fraud behavior
* MAS for make-to-stock production company

Planning

Activities

Physical

. . . . . Activities

Dominguez, R., Cannella, S.,Framinan, ].M.: SCOPE: A Multi-Agent system tool for supply chain network analysis.
In: IEEE EUROCON 2015 - International Conference on Computer as a Tool (EUROCON). pp. 1-5 (Sep 2015)
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CAIDAS

Main Tasks

Demand management

Communication with
customers

Purchase management

Communication with
providers

Demand forecast

Aggregate production
planning

Disaggregate
production planning

Jobs sequence

Reception and storage
of raw materials

Manufacturing process
(machines)

Storage of finished
products and delivery
to customers
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* Normal business prototype
(® planning )
N W& market trend
% put into storage
Q) Source L take from storage
£X production
* Buy resources ¥ spend money
Plan | * Store resources |3 get money )
* Price forecasting
* Scheduling Make Market

* Recieve resources
* Produce products
» Store products

* Set resource prices e
* Buy products

Storage / Booking

A /2

* Manage inventory
* Book transactions

Deliver

@\n/@f

* Set prices
* Sell products
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* Inserting opportunities for fraud
(® planning )
N W& market trend
% put into storage
Q) Source L take from storage
£X production
* Buy resources ¥ spend money
Plan | » Store resources ‘b get money
v
* Price forecasting \4 &> Y fraud g
* Scheduling Make \ Market
: greg:iea’fer;’fg&ﬂi: Q * Set resource prices e
Storage / Booking « Store products * Buy products
* Manage inventory @ &{&'
* Book transactions Deliver
* Set prices

* Sell products
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A
MAS > ML

Price trends train Preprocessing
Products Models
A
Purchases — é Hyperparameters
| Fraud
— Wtor

MAS-driven data generation
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MAS

Price trends

Products

Purchases

CAIDAS

MAS data-based preprocessing, model
and hyperparmeter selection

validation

ML

Preprocessing

Models

Hyperparameters

Fraud

Detector
= ML Model
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* Inserting known parameters

* Price trends
(public databases or interpolated from data)

* Products

* Number of purchases (upper bound)

* Market and business strategy assumptions
* Trend forecasts through Holt-Winters

. dafa

Sclence
C AIDAS
MAS(1) /
MAS(2)
A
MAS — é
A 3 .
Price trends train
Products
ERP . n
Data urchases L
ERPSim(1) / . .
ERPSim((Z)) validation
MAS(l)fraud /
MAS(Z)fIaud
Dataset Transactions Frauds I(Illz\ljl))l;:((:)k K?Slill;r;gck Larceny C?;?S;;tc
ERPSim(1) 36778 50 24 0 22 4
MAS(1) 92985 0 0 0 0 0
MAS(1)fraud 93356 223 51 104 66 2
ERPSim(2) 37407 86 30 0 48 8
MAS(2) 59378 0 0 0 0 0
MAS(2)fraud 64858 187 51 102 34 0
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. Invoice Selling Corporate
Dataset Transactions Frauds Kickback Kickback Larceny Injury
ERPSim(1) 36778 50 24 0 22 4
MAS(1) 92985 0 0 0 0 0
MAS(1)freud 93356 223 51 104 66 2
ERPSim(2) 37407 86 30 0 48 8
MAS(2) 59378 0 0 0 0 0
MAS(2)freud 64858 187 51 102 34 0
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* Train-eval tuning loop on synthetic MAS
data

* Train on clean MAS data
* Different preprocessing choices
* Different models

* Different hyperparameters

MAS (train)

M Asfraud
(validation)

(semi-)supervised

training and HP tuning

ML

Preprocessing

Models

Hyperparameters

Fraud

ERP Data
(retrain
and test)

Wr

unsupervised
retraining
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* Train-eval tuning loop on synthetic MAS
data

* Train on clean MAS data
* Different preprocessing choices
* Different models

* Different hyperparameters

* Select the best options according to MAS
test set including simulated fraud

MAS (train)

—B—

M Asfraud
(validation)

(semi-)supervised

training and HP tuning

ML

Preprocessing

Models

Hyperparameters

Fraud

ERP Data
(retrain
and test)

Wr

unsupervised
retraining
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Train-eval tuning loop on synthetic MAS
data

Train on clean MAS data

* Different preprocessing choices
* Different models

* Different hyperparameters

Select the best options according to MAS
test set including simulated fraud

Retrain best combinations on real ERP data
in unsupervised regime

* i.e., using contaminated data including fraud

Evaluate on labels of ERP data

MAS (train)

M Asfraud
(validation)

(semi-)supervised

training and HP tuning

ML

Preprocessing

Models

Hyperparameters

Fraud

ERP Data
(retrain
and test)

Wr

unsupervised
retraining
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(semi-)supervised HP choice model preprocessing PRsynth PRErRPsim@1) ROCERPsim(1)
training and HP tuning synthetic AE synthetic 17.5 + 2.6 26.5 + 4.3 99.1 +0.2
N IF synthetic 3.8+0.1 12.3 £ 0.8 97.5+0.3
ML OCSVM synthetic 21.5+0.0 28.1+0.0 96.0 £ 0.0
- default AE quantized N/A 1.7£0.3 73.0 +4.2
. : AE zscore N/A 1.4 £ 0.2 72.6 = 7.8
MAS (train) Preprocessing IF quantized N/A 5.3+2.3 98.2 0.3
Model IF zscore N/A 34406 97.4+£0.6
odels OCSVM quantized N/A 8.6 4 0.0 98.8 + 0.0
- OCSVM  zscore N/A 5.2+0.0 97.24 0.0

—_— Hyperparameters

MASfraud FraUd
Detector HP choice model preprocessing PRsyntn PRERPsim2) ROCEgrpPsim(2)
(validation) synthetic ~ AE synthetic 166+1.0 537+ 57  99.4+0.3
IF synthetic 10.9 + 0.7 218 2.6 98.24+0.3
OCSVM synthetic 1744+0.0 38.3+ 0.0 92.34+0.0
A

unsupervised default AE quantized N/A 24.4+13.6 99.24+0.2
traini AE zscore N/A 83+ 2.3 98.3+0.3
retraining IF quantized N/A 105+ 2.0 98.9 +0.2
ERP Dat IF zscore N/A 11.3+ 4.0 98.7+0.2
ata OCSVM  quantized N/A 237+ 0.0 99.3 + 0.0
(retrain OCSVM  zscore N/A 110 0.0 98.2 £0.0

and test)
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* Limitations:
* Proof of concept including only basic economic procedures and fraud cases

* May be extended with new agents and strategies to cope with complexity of real-
world data

* Conclusion
* Framework for detecting occupational fraud in unlabeled ERP data using a multi-
agent system
* MAS-simulated data resembles data characteristics of real data or given economic
trends

* This approach allows preprocessing, model and hyperparameter selection without
the need of labeled validation data
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ERPSim data Contact

* Conclusion
* Framework for detecting occupational fraud in unlabeled ERP data using a multi-
agent system

* MAS-simulated data resembles data characteristics of real data or given economic
trends

* This approach allows preprocessing, model and hyperparameter selection without
the need of labeled validation data
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