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Motivation
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Mary needs a loan

Bank evaluates Mary’s 

financial situation

Good loan quality

Bad loan quality

Bank earns money => 

more capital for:

Bank losses money =>  

less capital for:

…compen

sating for 

losses

…granting 

new loans
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Motivation

Credit risk assessment

• Stability of financial 
system assurance

• Regulatory 
requirements 
compliance

Risk-Weighted Assets 
(RWA) calculation

• Allocating a risk 
weight according to 
the estimated 
riskiness of various 
asset categories

• Keeping more capital 
to protect against 
potential losses on 
an asset with a 
greater risk weight

Credit risk data

• Decentralized with 
local systems being 
data entry points

• Consolidated in a 
central warehouse 
for reporting 

• Diversity of data 
sources as a major 
reason for DQ issues 
(Moges et al., 2013)

Credit risk Data Quality 
assurance 

• Manual evaluation 
not possible due to 
high volumes 

• Automatic detection 
by Machine Learning 
(ML) models as a 
promising solution

Goal: investigate how ML models can be used to discover data quality (DQ) problems in credit risk 

data using a human-in-the-loop approach and bridge DQ and credit risk domains
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DQ: Garbage in – garbage out
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Low quality data High quality model Bad results

High quality data High quality model Good results



Credit risk

• Regulatory 
compliance

• Basel III (BIS, 2017)

• IFRS 9 (IFRS, 
2014)

DQ in finance

• Data standardization 
and cleaning 
according to business 
rules and constraints 
(Nadinic & Kalpić, 
2008)

• Total Data Quality 
Management (TDQM) 
for credit risk (Moges
et al., 2013)

• ML for Anomaly 
detection in 
accounting entries  
(Bakumenko & 
Elragal, 2022)

eXplainable AI in 
Finance

• Auditing transparency 
(Zhang et al., 2022)

• Credit risk prediction 
explainability
(Gramegna & Giudici, 
2021; Bussmann et al., 
2021; de Lange et al., 
2022) 
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Related work
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Credit risk estimation

• Internally determine the capital required to cover for unexpected losses

• Externally comply with accounting (IFRS 9) and banking (Basel III) 
standards  

Risk-Weighted Assets (RWA)

• A standardized approach to measure credit risk

• Constrains the use of internal models

• Relies heavily on Probability of Default (PD), Loss Given Default (LGD) 
and Exposure At Default (EAD) 
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Credit risk overview

Source: Basel III
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DQ framework
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Avoid!

Nice to have!

Desired 

result
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• Risk-Weighted Assets (RWA)

• Outstanding Amount (OS)

• Provisions (P)

• Maximal Limit (ML)

• Loss Given Default (LGD)

• Exposure-at-Default (EAD)

• Probability of Default (PD)
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Feature engineering

Ratio = ln
𝑉𝑡

𝑉𝑡−1
: the way to incorporate 

changes in time

The idea is to check if the movements 

have business reasons or are anomalous. 

No DQ issues history No labels Unsupervised learning!
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~175k loans for SME & Mid. Corporates 

from the multi-national bank



Isolation Forest

Unsupervised outlier detection algorithm

based on the fact that outliers are “few and 
different”, and therefore easier to isolate

Built using decision trees

Autoencoder

Unsupervised artificial neural network

The encoder compresses the input data into 
less dimensions and reduces the noise

The loss function is calculated to correct the 
reconstruction error produced by the decoder
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Why? - Among the best performing according to the literature and among the 

most adopted in practice (Han et al., 2022; Tiukhova et al., 2022)
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iForest

• SHAP TreeExplainer

• Explains the depth of the 
average path length of iTrees
(Lundberg et al., 2020)

• Path length as a sum of additive 
feature contributions

Autoencoder

• SHAP KernelExplainer for 
Autoencoder

• Explains a reconstruction error: 
connection between the features 
with high reconstruction errors  
and the features affecting the 
reconstruction error the most 
(Antwarg et al., 2021)
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eXplainable AI: SHAP
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Anomaly 
detection

• 2 models: 
iForest and 
Autoencoder

• Outlier 
scores 
transformati
on: Min-Max 
Scaler

Scaled outlier 
scores

Aggregation

• Currently: 
average of 
scaled 
outlier 
scores

Final outlier 
scores

Scoring&XAI

• Top-20 cases 
to be checked 
by the DQ 
expert

• Local SHAP  
explanations:
depends on 
the model’s 
certainty

Top-K 
cases

Feedback

• DQ issues

• False 
positives
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DQ issues detection pipeline
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Results of Round 2: top-20 cases
Loan DQ-Issue? Agg. Score

DQ issue features –

feedback
SHAP top-3?

Loan 1 Yes 0,98 LGD Yes

Loan 2 Yes 0,98 LGD & Max. Limit Yes

Loan 3 No 0,97

Loan 4 No 0,95

Loan 5 No 0,92

Loan 6 Yes 0,86 Relationship EAD, RWA, OS Yes

Loan 7 Yes 0,86 Relationship EAD, RWA, OS Yes

Loan 8 No 0,85

Loan 9 Yes 0,85 EAD Yes

Loan 10 Yes 0,79 Relationship EAD, RWA, OS Yes

Loan 11 Yes 0,78 Relationship EAD, RWA, OS Yes

Loan 12 Yes 0,78 Relationship EAD, RWA, OS Yes

Loan 13 Yes 0,78 Relationship EAD, RWA, OS Yes

Loan 14 Yes 0,78 Relationship EAD, RWA, OS Yes

Loan 15 No 0,77

Loan 16 Yes 0,75 Relationship EAD, RWA, OS Yes

Loan 17 Yes 0,75 Relationship EAD, RWA, OS Yes

Loan 18 No 0,75

Loan 19 Yes 0,74 Relationship EAD, RWA, OS Yes

Loan 20 Yes 0,72 OS No

FEB, Research Centre for Information Systems Engineering
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Potential systemic case!

Precision@20 = 70%
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SHAP
Case 1: max. AE score Case 2: max. IF score 

DQ expert feedback:

Risk class remained the same but LGD became higher

RWA_

RATIO
OS_RATIO

PROVISION

_RATIO

EAD_

RATIO

LGD_

RATIO
PD_RATIO

MAX_LIMIT_

RATIO

Loan 1
-16,84 -32,97 0 -17,76 0,99 0 -14,55

RWA_

RATIO
OS_RATIO

PROVISION_

RATIO

EAD_

RATIO

LGD_

RATIO
PD_RATIO

MAX_LIMIT_R

ATIO

Loan 2 -16,96 -31,66 -28 -16,74 0,22 -1,27 -13,24

DQ expert feedback:

Max. Limit is set to 1 which is incorrect – potential systematic DQ issue

FEB, Research Centre for Information Systems Engineering
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Conclusions

So far 
so 
good?

Complementing static univariate DQ rules with 
dynamic multivariate ML model

Novel ML DQ framework that can be generalized 
at other institutions 

RWA miscalculation analysis is still ongoing

Transparent model output that increases trust in 
DQ ML techniques

Problem statement Related work DQ framework Results Conclusions Future work
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DQ application for stakeholders

LSTM Autoencoder for anomaly 
detection on daily time series data

Model calibration based on the 
feedback

16

Future work
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Thank you for your attention!
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