

MIDAS – ECML PKDD 2023

September 22, 2023

Comparing Deep RL and Traditional Financial Portfolio Methods

E. Benhamou, JJ Ohana, B. Guez, D. Saltiel, R. Laraki, J. Atif

Portfolio allocation

- In asset management, there is a gap between mainstream used methods and new machine learning techniques around RL
- DRL has achieved strong results in challenging tasks

Traditional methods

- Portfolio: Markowitz (1952), and various extensions: Minimum variance, Maximum diversification, Maximum decorrelation, Risk Parity
- In terms of ranking: Sharpe Ratio (1966),

These are indeed optimization

Markowitz, H. 1952.

denote by $w = (w_1, ..., w_l)$ the allocation weights $\mu = (\mu_1, ..., \mu_l)^T$ be the expected returns Σ the matrix of variance covariances r_{min} be the minimum expected return

 $\begin{array}{ll} \underset{w}{\text{Minimize}} & w^T \Sigma w & (1) \\ \text{subject to} & \mu^T w \ge r_{min}, \sum_{i=1...l} w_i = 1, 1 \ge w \ge 0 \end{array}$

Figure 1: Markowitz efficient frontier for the GAFA: returns taken from 2017 to end of 2019

All methods are indeed convex optimization

Minimum variance portfolio

 $\begin{array}{ll} \underset{w}{\text{Minimize}} & w^T \Sigma w\\ \text{subject to} & \displaystyle{\sum_{i=1...l} w_i = 1, 1 \geq w \geq 0} \end{array}$

Chopra and Ziemba 1993

Maximum diversification portfolio

Maximize
$$\frac{w^T \sigma}{\sqrt{w^T \sum w}}$$

subject to $\sum_{i=1...l} w_i = 1, 1 \ge w \ge 0$

 $\sigma = (\Sigma_{i,i})_{i=1..l}$ the diagonal elements of the covariance matrix Σ_{i}

Choueifaty and Coignard 2008

What about RL?

Maximize
$$\pi(.)$$
 $\mathbb{E}[R_T]$ \longleftarrow A more general objectivesubject to $a_t = \pi(s_t)$ \longleftarrow With general constraints

where R R_T cumulative reward to be defined later and $a_t = \pi(s_t)$ he action given by a policy that is a function of states (more to come)

Why RL and not supervised?

Reinforcement Learning (RL):

RL consists in **finding the optimal action** A_t^* (the portfolio allocation) **according to states** S_t (financial information) **given a reward** R_t (the best net portfolio final performance)

RL learns and finds the optimal portfolio allocation in an interactive environment by trial and error using feedback from actions and rewards

Supervised Learning (SL):

Quite general and encompasses **classification and regression.** Goal is to **infer a function** from labelled training data that maps inputs into outputs

we observe $D_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ *n* independent random copies of $(X, Y) \in \mathcal{X} \times \mathcal{Y}$

find a function $f : \mathcal{X} \mapsto \mathbf{R}$

f that minimizes the expected $\ell\text{-risk}$

 $\mathcal{R}_{\ell}(h) = \mathbf{E}_{X \times Y}[\ell(Y, f(X))].$

Observations

• Regular observations:

• Past returns $r_t = \frac{p_t^k}{p_{t-1}^k} - 1$ where p_t^k

is the price at time t of the asset

• Empirical standard deviations useful to detect regime changes $\sigma_t^k = \sqrt{\frac{1}{d} \sum_{u=t-d+1}^t (r_u - \mu)^2}$

- Contextual information:
 - Equity data
 - Fixed income data
 - Credit data
 - Interactions between variables
 - → Two-dimensional tensor

$$C^t = \begin{pmatrix} c_t^1 \dots c_{t-i_k}^1 \\ \dots \dots \\ c_t^p \dots c_{t-i_k}^p \end{pmatrix}$$

What about the different RL Algorithms?

Comparison of DRL algorithms

Algorithms	Input	Output	Туре	State-action spaces support	Finance use cases support	Features and Improvements	Advantages
DQN	States	Q-value	Value based	Discrete only	Single stock trading	Target network, experience replay	Simple and easy to use
Double DQN	States	Q-value	Value based	Discrete only	Single stock trading	Use two identical neural network models to learn	Reduce overestimations
Dueling DQN	States	Q-value	Value based	Discrete only	Single stock trading	Add a specialized dueling Q head	Better differentiate actions, improves the learning
DDPG	State action pair	Q-value	Actor-critic based	Continuous only	Multiple stock trading, portfolio allocation	Being deep Q-learning for continuous action spaces	Better at handling high-dimensional continuous action spaces
A2C	State action pair	Q-value	Actor-critic based	Discrete and continuous	All use cases	Advantage function, parallel gradients updating	Stable, cost-effective, faster and works better with large batch sizes
PPO	State action pair	Q-value	Actor-critic based	Discrete and continuous	All use cases	Clipped surrogate objective function	Improve stability, less variance, simply to implement
SAC	State action pair	Q-value	Actor-critic based	Continuous only	Multiple stock trading, portfolio allocation	Entropy regularization, exploration-exploitation trade-off	Improve stability
TD3	State action pair	Q-value	Actor-critic based	Continuous only	Multiple stock trading, portfolio allocation	Clipped double Q-Learning, delayed policy update, target policy smoothing.	Improve DDPG performance
MADDPG	State action pair	Q-value	Actor-critic based	Continuous only	Multiple stock trading, portfolio allocation	Handle multi-agent RL problem	Improve stability and performance

- Action: long only allocation that sum to 100% in 11 assets :
 - Equity indexes (4) : S&P 500, Eurostoxx 50, Nikkei 225, FTSE 100.
 - **Bonds** (4): US 10-year TNote, European Bund, UK 10-year Gilt, Japanese Government Bond 10-year.
 - Commodities (3): Brent Oil, Gold, and Copper
- Reward: Get the highest Sharpe out of sample

Features

Bloomberg Ticker	Description	Category
ES1 Index	E-Mini S&P 500 Fu- tures	Equity
NII1 Index	Nikkei 225 Futures (Yen)	Equity
VG1 Index	Euro Stoxx 50 Futures	Equity
Z 1 Index	FTSE 100 Futures	Equity
TY1 Index	10Y T-Note Futures	Rates
RX1 Index	Euro-Bund Futures	Rates
G1 Index	ICE Long Gilt Futures	Rates
JB1 Index	10Y JGB Futures	Rates
GC1 Index	Gold Futures	Commodity
CO1 Index	Brent Crude Futures	Commodity
HG1 Index	High Grade Copper Fu-	Commodity
	tures	

Table 1. Regular observations. List of all portfolio assets

Table 2. List of all the features used as contextual variables

Bloomberg Ticker	Description	Category
USGG10YR Index	US Rates 10 year	Interest Rates
USGG2YR Index	US Rates 2 year	Interest Rates
GDBR10 Index	Europe Rates 10 year	Interest Rates
GDBR2 Index	Europe Rates 2 year	Interest Rates
VIX INDEX	Choe Volatility Index	Market Sentiment
CDX HY CDSI GEN 5Y SPRD Corp	MARKIT Credit CDX IIY index	Credit Default Swaps
ITRX XOVER CDS	I MARKIT Credit Eu	Credit Default Swaps
GEN 5Y Corp	Dollar index	Currence: Datas
DEDCICIDD6 Index	Summer of Declamican	Engrandia Engrand
FFRGGDF0 index	Forecaster on GDP	Economic Porecast
PHFFCPI1 Index	Survey of Professional	l Economic Forecast
	Forecaster on CPIT	
DOESTCRD Index	Crude Oil Total Inven-	 Commodity Market
	tory	
COMXGOLD Index	Comex Gold Inventory	Commodity Market
	Data	
COMXCOPR Index	Comex Copper Inven-	 Commodity Market
	tory Data	
CESIGL Index	Global Economic Sur-	 Economic Indicators
	prise	
CESIUSD Index	USD Economic Sur-	 Economic Indicators
CESIEUR Index	prise EUR Economic Sur-	- Economic Indicators
	prise	
CESIJPY Index	JPY Economic Surprise	Economic Indicators
CESIEM Index	EM Economic Surprise	Economic Indicators

Results

12

Conclusion

- Deep learning and reinforcement techniques show great potential in financial portfolio allocation as it:
 - Can extract valuable insights from intricate financial data for better investment decisions.
 - Can adapt behavior to context
- Traditional financial techniques can be formulated as equivalent reinforcement learning problems.
- An experiment confirmed DRL outperformed conventional methods :
 - Higher annual returns
 - Superior risk-adjusted returns (Sharpe ratio)
 - Better management of maximum drawdowns.