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• Motivations

• What is a Normalising Flow (NF)?

• The problem – tails of distributions

• Our solution

• Experimental evidence

Outline of Talk



Characteristics of financial data 

(asset returns)

• Temporal structure 

• volatility clustering

• time varying correlations

• Complex structure in high dimensions

• Heavy tails

Motivations: Challenges



• Use ML methods to get better models 

for observed phenomena

• Sample new synthetic data sets with 

realistic characteristics

Motivation: Aims



Characteristics of financial data

• Temporal structure

• volatility clustering

• time varying correlations

• Complex structure in high dimensions

• Heavy tails

Motivation: Focus



• Assume a base (latent) distribution over Z∈ ℝ d

• Sample X = T(Z; θ)∈ ℝ d

• Parameterisation θ provided by neural networks

• Compose multiple T for more flexibility

Normalising Flows: Setup

[Papamakarios, 2021]



Key idea - Construct T such that:

• We have analytic inverse T-1

• The determinant of the Jacobian of T is tractable

Then:

• Analytic approximate density for X, q(x; θ) 

(transformation of a random variable)

• Able to sample new X

Normalising Flows: Key Ideas



Fit by maximum likelihood:

Observed data {x i} i=0,…,n

Maximise L(θ) = Σi log q(x i; θ)

The gradient of L (θ ) can be numerically 

evaluated with automatic differentiation.

We can optimise with SGD methods.

Normalising Flows: Training



Pros:

• Evidence of working well for high 

dimensional complex data ( e.g images) 

[Kingma 2018]

• Exact density (may be useful for risk)

Cons:

• May be less flexible than e.g. GAN, VAE

• No dimension reduction

Good choice for Financial Data?



Lipshitz (≈bounded derivative) 

transformations cannot alter the tails of 

distributions

[Jaini 2020]

->Many NF transformations are Lipshitz

->Very important for simulating financial data

The Problem



Int roduce  a  bas e  d is t r ibut ion  w ith  t rainable  ta i l s .  

[ Ja in i  2 0 2 0 ,  L as z k ie w icz  2022 ,  L iang  2022]

Solutions: Current



(also [McDonald 2022])



Introduce transformation based on the 

functional form of the Generalised Pareto 

Distribution (GPD).

GPD – Well theoretically justified model 

for tails.

[Coles 2001, Pickands 1975]

Details of Our Solution: Tail Transform



Inverse CDF of the GPD:

Q(u; λ) = [(1 - u)-λ - 1] / λ

Tail parameter λ  > 0  i s  the  G EV tai l  parame te r.

Extend to reals via standard Guass error 

function

T(z; λ) = Q(erf(z); λ)

Details of Our Solution: Tail Transform



Other modifications:

• Tail asymmetry- allow for different positive 

and negative tail parameter

• Numerical stability – use of erfc

• Guassian tails  - Switch to power transform (including 

identity) at transition for –1 < λ  < 0

• Incorporate joint shift and scale

Parameters for each dimension:

h i = (λ -, λ +, μ, σ)

Details of Our Solution: Tail Transform



Multivariate problem: Use standard masked 

autoregressive approach [Papamakarios 2022]

Details: Masked Autoregression

Key Ideas:
- Parameters of 

transformation are a 
function of inputs

- We can evaluate in a 
single pass of NN

[Anadan, Dalmia]



• Want to avoid passing any extremes to NN 

if possible

• Also consider marginal transformations

Details: Marginal Transform



We test the approaches on S&P 500 daily returns 

2010-2022 – treat as IID

• Consider top d most traded stocks

• 10 repeats for each model

• 40/20/40 train/validation/test split

• Adam optimiser, Early stopping

Experiments: Experimental Details



Base architecture RQS:

• gTAF:  -Gaussian Base, +Students T base

• [Laszkiewicz 2022] (generalised tail adaptive flow)

• TTF: -affine, +full tail transformation

• EXT: -affine, +full tail transformation with λ > 0

• TTF_m: –affine, +marginal tail transformation

Experiments: Models

Guassian 
Base

Autoregressive 
spline

Autoregressive 
affine



Experiments: Results



• Modelling tails provides far superior 

fit relative to naïve approach

• Our experiments provide some evidence 

that capturing extremes in final 

transformation is good

• More investigations required

• Opportunities to incorporate temporal 

information (conditioning on hidden 

state)

Conclusion + Future Work
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Analytic Density:

q(x; θ) = qz(T
-1(x; θ))|det JT

- 1|

Fit by maximum likelihood:

Observed data {x i}i=0,…,n

Maximise L(θ) = Σ i log q(x i ;  θ )

Normalising Flows: Training

Base Density

Implied Density Inverse Transformation

Jacobian Determinant
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