# Topology-Agnostic Detection of Temporal Money Laundering Flows in Billion-Scale Transactions

Haseeb Tariq<sup>1, 2</sup> and Marwan Hassani<sup>1</sup>

[1] Streaming Process Analytics Group, TU/e, The Netherlands

[2] Transaction Monitoring Netherlands (TMNL)



MIDAS @ ECML PKDD 2023 | Turin, Italy 22 September 2023



# A framework for detecting money laundering networks

- Background and problem formulation
- Challenges and key contributions
  - Scalable
  - Topology (and typology) agnostic
  - Minimum assumptions (filtering, grouping, etc.)
  - Applicable to a multi-bank setting
- Experimental evaluation on real data
- Conclusion





# Money laundering is a threat to society

• An estimated **16 billion Euros annually** are laundered just in the Netherlands

Laundering money is of key importance to the financing of criminal activity

• Therefore, causing **human suffering** and large damage to society





Money laundering is a threat to society



Criminals obtain "dirty money" from illicit activities

- Human trafficking
- Corruption
- Drug trafficking
- Terrorism





## Money laundering is a threat to society



Criminals obtain "dirty money" from illicit activities



"Dirty money" is difficult to use for investments



#### TU/e EINDHOVEN UNIVERSITY OF TECHNOLOGY

#### Introduction

## Money laundering is a threat to society

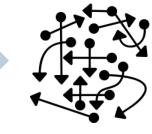


Criminals obtain "dirty money" from illicit activities



"Dirty money" is "laundered" by making it flow in complex patterns through the financial system, obfuscating its origin





"Dirty money" is difficult to use for investments



#### TU/e EINDHOVEN UNIVERSITY OF TECHNOLOGY

#### Introduction

## Money laundering is a threat to society



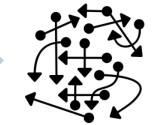
Criminals obtain "dirty money" from illicit activities



"Dirty money" is "laundered" by making it flow in complex patterns through the financial system, obfuscating its origin



"Dirty money" is difficult to use for investments





... turning it into "clean" hence investable money





## Transaction Monitoring Netherlands (TMNL)

We're fighting money laundering at an unprecedented scale

- Joint venture of 5 Dutch banks: ING here ABN·AMRO
   de volksbank Triodos & Bank Rabobank here
- Pooling pseudonymized transaction data (of businesses) at TMNL
- The larger the transaction graph, the better we can detect money laundering
   ... consequently, the more complex the problem becomes
- We build models that detect unusual patterns on the inter-bank transaction graph that might indicate money laundering







Challenges

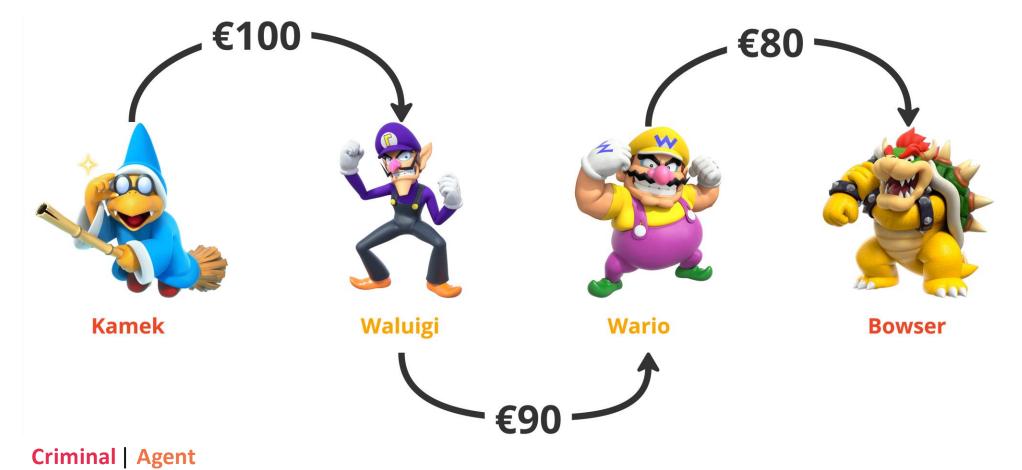
# Anti Money Laundering (AML) Modeling

- Needle-in-a-haystack problem
- Complex and ever evolving money-laundering patterns
- Computationally expensive
- Lack of data features (due to privacy, bias, etc.)





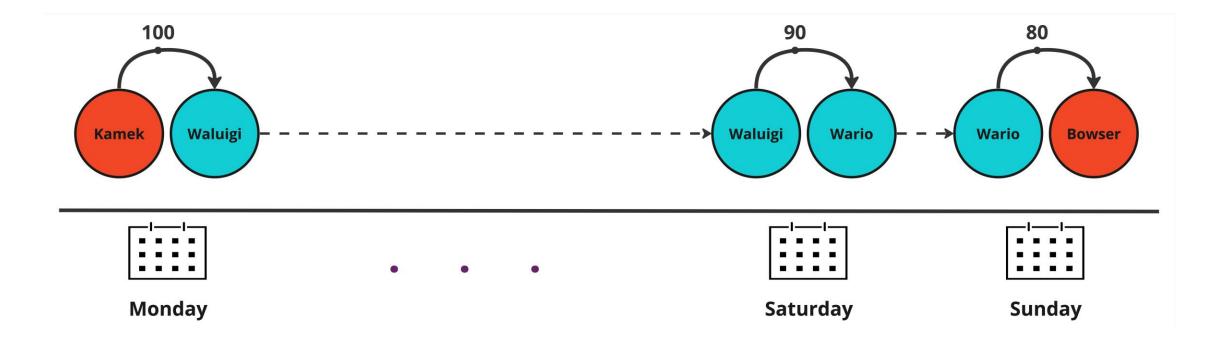
# Background What is a flow?







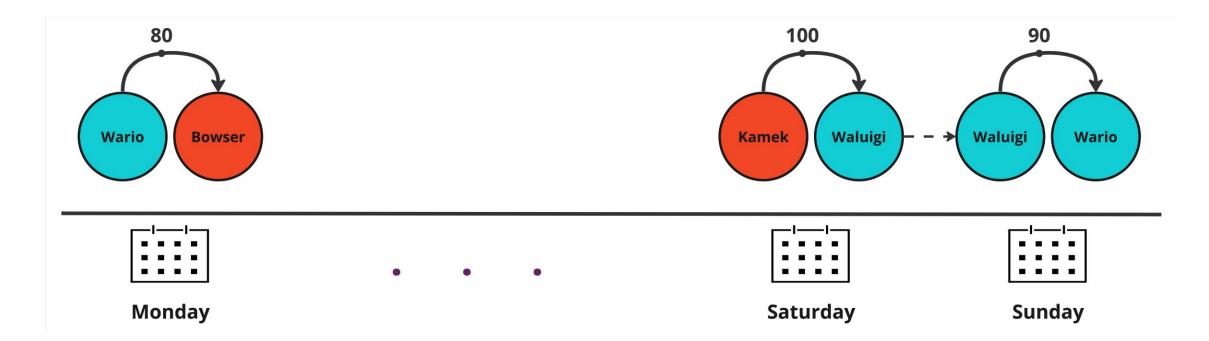
# Background What is a flow?





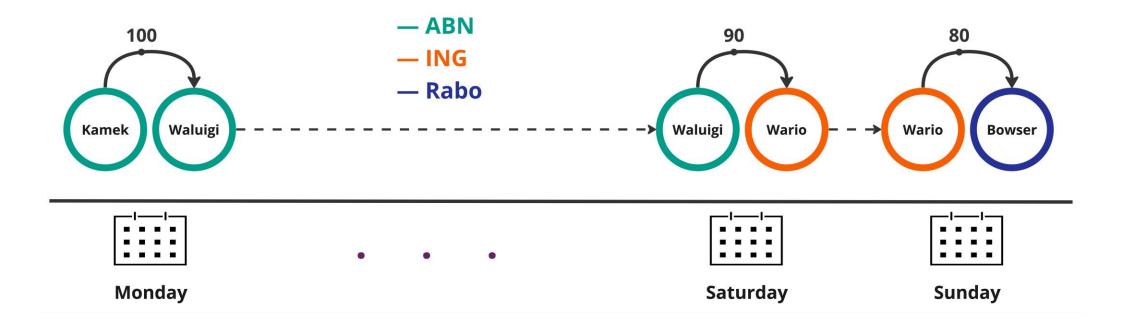


# Background Is this a flow?



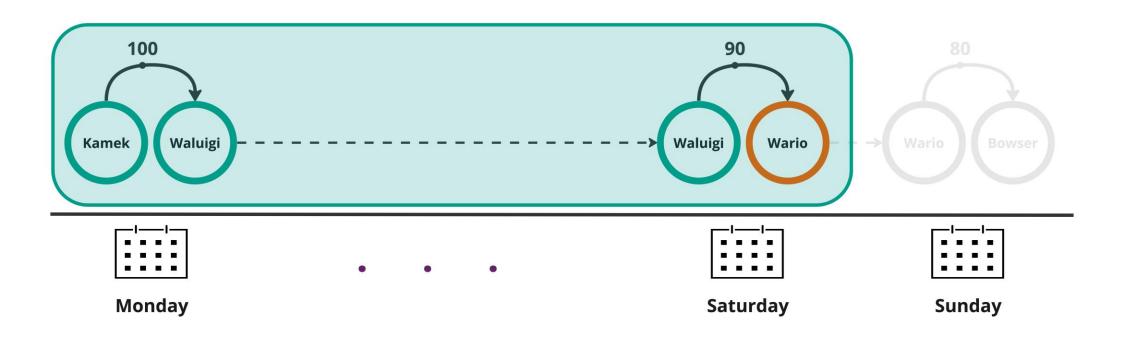






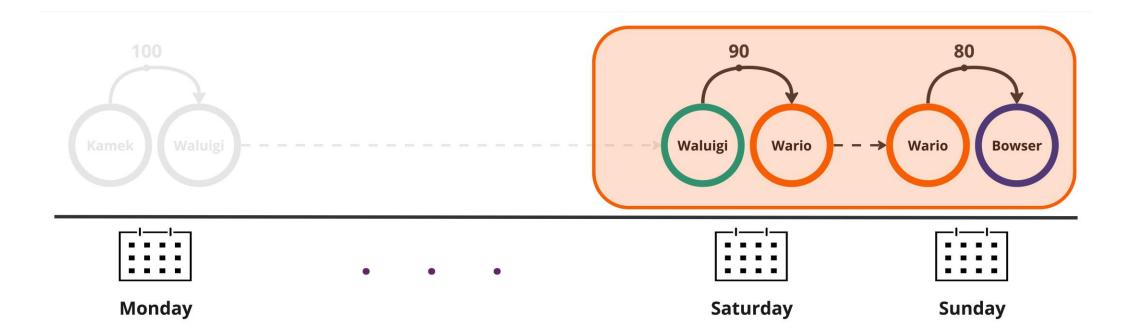






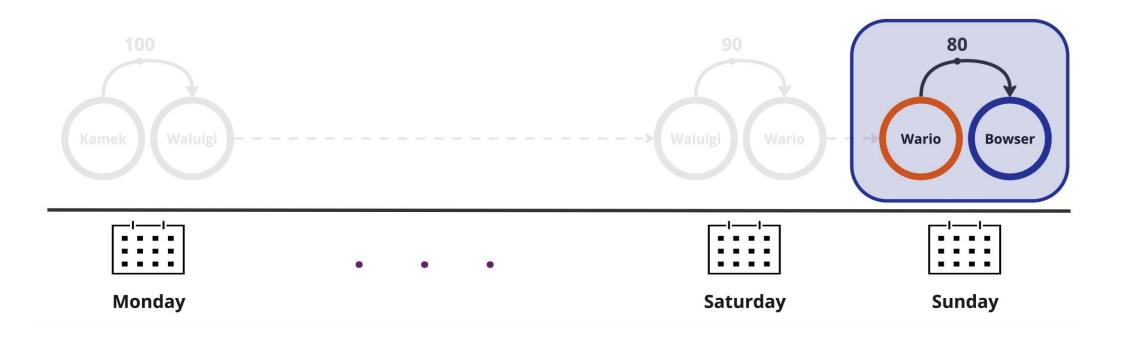






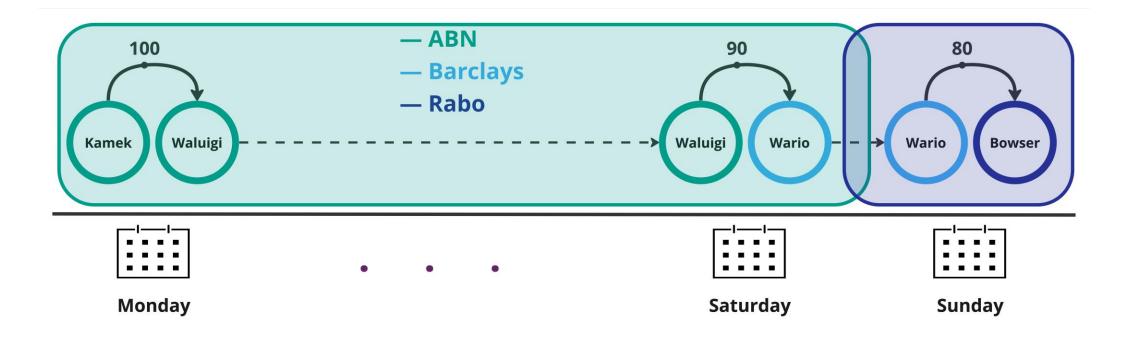
















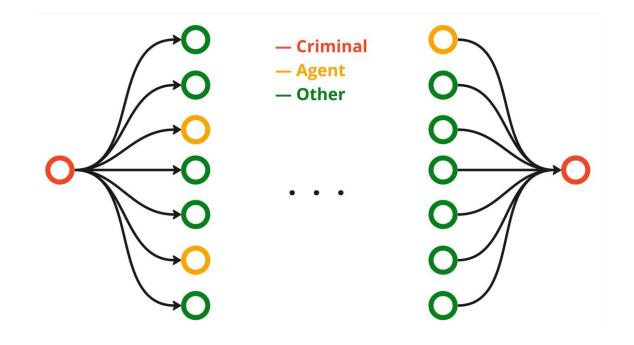
[Why Complicate] Transferring money via several hops







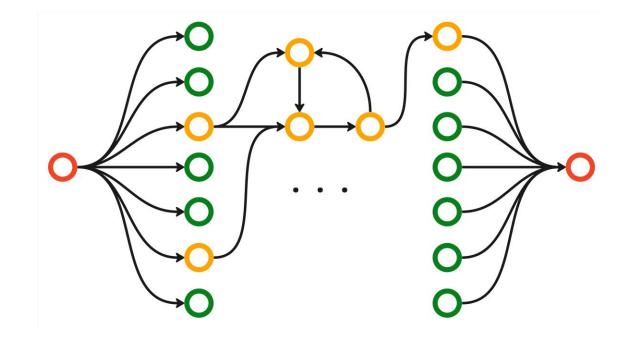
# [Why Complicate] Few interactions with the accomplices







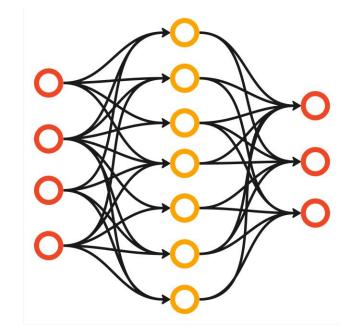
## [Why Complicate] More interactions among the accomplices







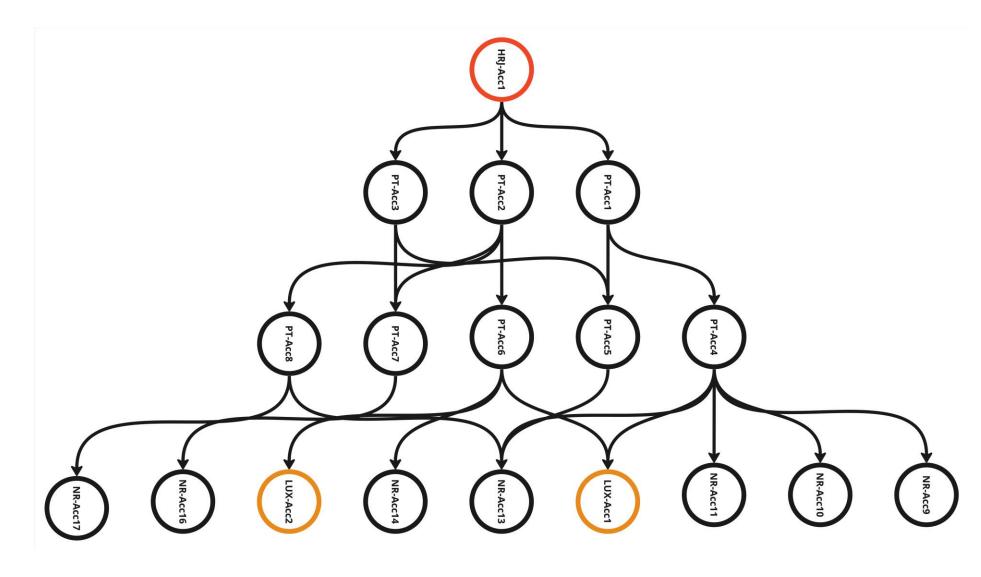
# [Why Complicate] Breaking down big transactions into many (small) transactions







## Motif queries complexity







## Limitations in existing methods

- Define start and end of a flow
- Define number of hops
- Every path has the same importance
- Naïve grouping of flows





## Limitations in existing methods

|                                 | Dynamic<br>Grouping | Parameter-<br>free for # of<br>hops | Complex<br>Flows | Suitable for<br>multi-bank<br>data |
|---------------------------------|---------------------|-------------------------------------|------------------|------------------------------------|
| <b>DBJ</b> [28]                 | ×                   | ×                                   | ×                | $\checkmark$                       |
| FlowScope [26]                  | $\checkmark$        | ×                                   | ×                | ×                                  |
| <b>FaSTM</b> $\forall$ N (Ours) | $\checkmark$        | $\checkmark$                        | $\checkmark$     | $\checkmark$                       |

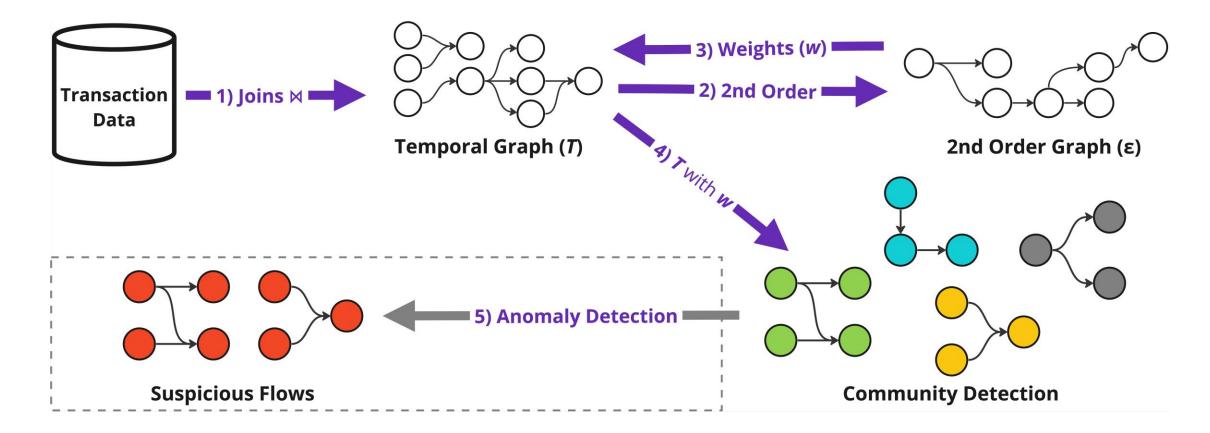
Table 1: Features Comparison of State-of-the-art AML approaches and FaSTM $\forall \texttt{N}$ 





#### Method

### Framework diagram

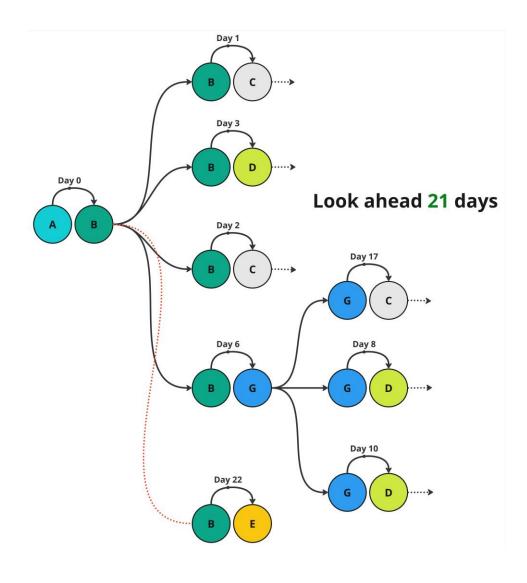


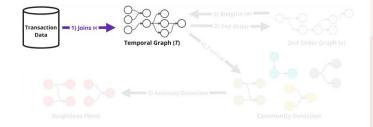




[Method] 1) Joins

### Connect every transaction to every other possible transaction

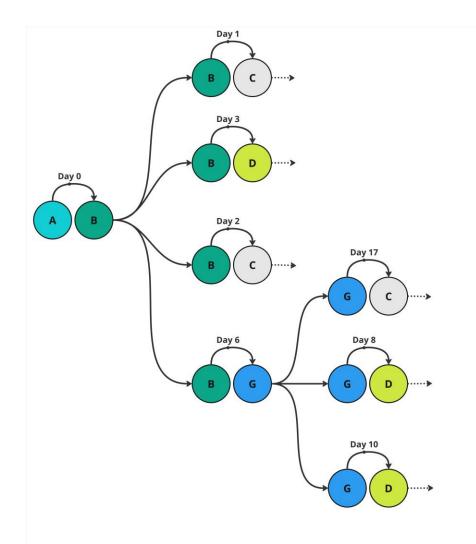


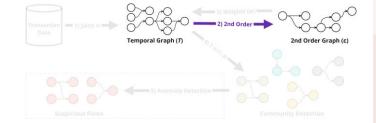




#### TU/e EINDHOVEN UNIVERSITY OF TECHNOLOGY

### [Method] 2) 2<sup>nd</sup> Order Quantify the connections





**Definition 2 (Co-occurrence Weight).** Using S, the co-occurrence weight between a source node  $A \rightarrow B$  and a destination node  $B \rightarrow C$  is calculated as,

$$\mathcal{W}(A \to B, B \to C) = max(\mathcal{P}(A \to B, B \to C), \mathcal{P}'(A \to B, B \to C))$$

where,

$$\mathcal{P}(A \to B, B \to C) = \frac{|\mathcal{S}(A \to B \sim B \to C)|}{|\mathcal{S}(A \to B \sim B \to [*])|}$$

and,

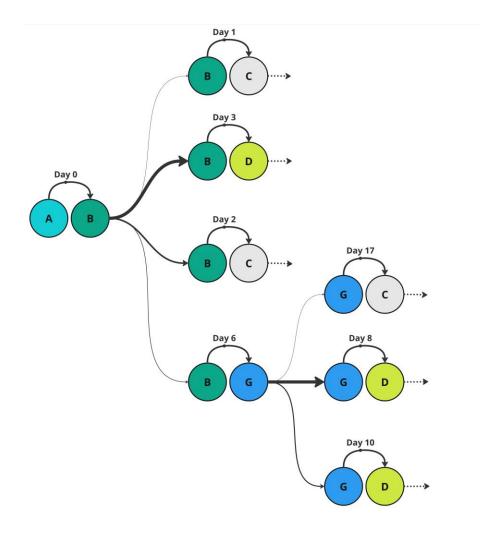
$$\mathcal{P}'(A \to B, B \to C) = \frac{|\mathcal{S}(A \to B \sim B \to C)|}{|\mathcal{S}([*] \to B \sim B \to C)|}$$

where, [\*] represents **any** account and  $\sim$  represents directed adjacency from the left to the right node(s).



#### TU/e EINDHOVEN UNIVERSITY OF TECHNOLOGY

### [Method] 3) Weights Apply the weights



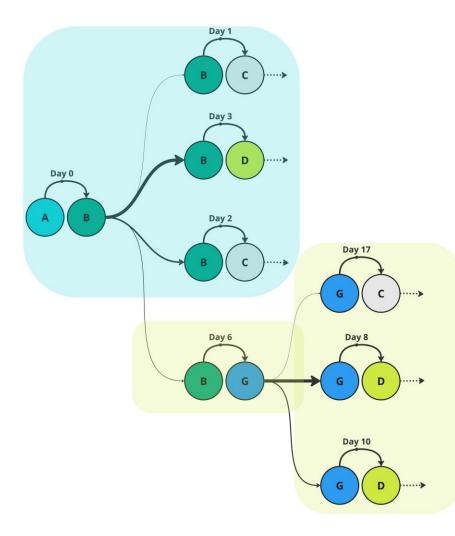
| Transaction<br>Data = 1) joins H | 0,040-0              | 3) Weights (w)<br>(2) 2nd Order<br>2nd Order<br>2nd Order Graph (£) |
|----------------------------------|----------------------|---------------------------------------------------------------------|
|                                  |                      |                                                                     |
|                                  | 5) Anomaly Detection |                                                                     |
|                                  |                      |                                                                     |

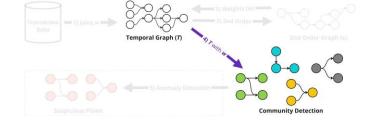
| Source Perspective |     | <b>Destination Perspective</b> |     |
|--------------------|-----|--------------------------------|-----|
| А→В                | B→C | A→B                            | B→C |
| D→B                | B→E | D→B                            | B→E |
| D→B                | B→E | D→B                            | B→E |
| А→В                | B→W | А→В                            | B→W |
| A→B                | B→C | А→В                            | B→C |
| К→В                | B→L | К→В                            | B→L |
| Z→B                | B→T | Z→B                            | B→T |
| Z→B                | B→C | Z→B                            | B→C |
| A→B                | B→L | А→В                            | B→L |
| A→B                | B→G | А→В                            | B→G |
| =                  | 2/5 | =                              | 2/3 |



[Method] 4) Community Detection

## Detect communities of connected transactions





Vincent A. Traag, Ludo Waltman, and Nees Jan van Eck. "From Louvain to Leiden: guaranteeing well-connected communities", Scientific Reports.

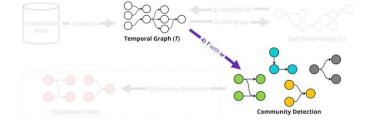




[Method] 4) Community Detection

Detect communities of connected transactions

- Transactions that are *strongly* connected form a community
- If transaction-x appears in community-y
  - It will not appear in any other community
  - -The other transactions in community-y have strong dependence on transaction-x
  - -The transactions in other communities have weak(er) dependence on transaction-x







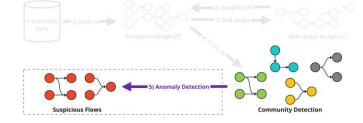
Transactie Monitoring Nede

[Method] 5) Suspicious Flows

Marking communities of transactions as suspicious

- Max-flow based approach
  - -Cash deposits as sources
  - -HRJ deposits as sinks
- Graph level Anomaly Detection (GLAD)
  - -Graph embeddings
  - -Autoencoders
  - -Isolation forest
  - -...?

Follow all Suspicious Trails of Money for all Nodes (FaSTM $\forall$ N)





Experimental Evaluation

## Space Complexity

| [     | Step                       | Transactions  | $\mathcal{T}$ Edges |      |
|-------|----------------------------|---------------|---------------------|------|
| [     | Initial state              | 1.1 billion   | -                   |      |
|       | Pre-processing             | 510 million   | -                   |      |
|       | ${\cal T} \ { m creation}$ | 475 million   | 25 billion          |      |
|       | Remove weak edges          | 325 million   | 2.3 billion         |      |
| Table | 2: Space explosion         | and implosion | after each          | step |





#### Experimental Evaluation

### Runtimes

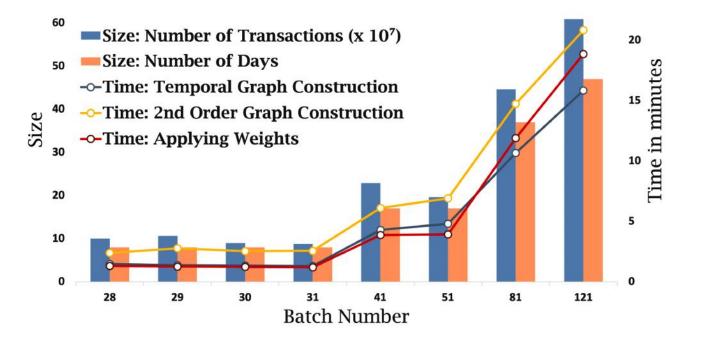


Fig. 8: Runtimes for batches with different number of days in the data





#### Results

## Functional and usability comparison

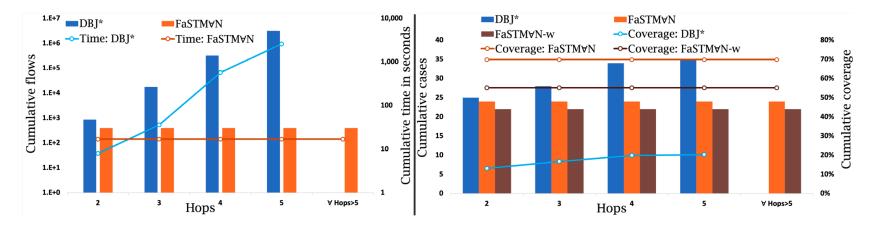


Fig. 10: Suspicious flow detection comparisons. (a) A comparison for runtimes. Both y-axes scales are logarithmic. (b) A functional comparison for the suspicious flows. Higher coverage with lower number of cases is the desired outcome.





### Results Topology-agnostic nature

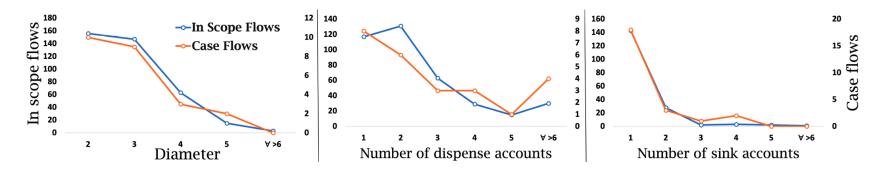


Fig. 11: Topological diversity of the flows





#### Results

## Functional and usability comparison

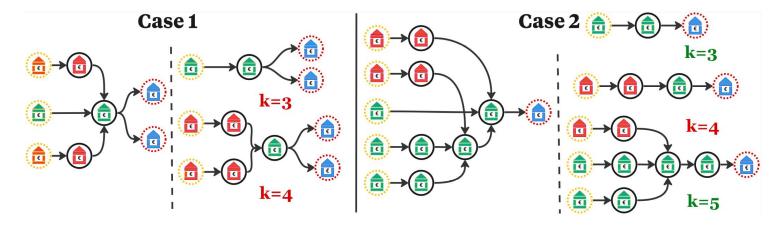


Fig. 12: Two cases of **real** flows. On the left of the dashed lines are the flows detected by FaSTM $\forall$ N, and on the right, the series of **separate** flows detected by FlowScope. The red font for k=x indicates that the flow was not flagged suspicious by FlowScope, based on risk criterion C3.





Conclusion

## Future work and improvements

- Using higher (> 2<sup>nd</sup>) order or multi-order representations may reveal more interesting relationships
- Experimentation with the edge weights is important based on business problem you are looking to capture meaningful relationships based on what you deem important for the modus operandi
- Community detection
  - Based on recurring flows, over different periods of time, detect communities of entities
- Targeted network search
  - Return all the dominant flows a query account is involved in





Conclusion Questions

- haseeb.tariq@tmnl.nl
  - <u>https://mhaseebtariq.com/</u>
- <u>m.hassani@tue.nl</u>
- Transaction Monitoring Netherlands (TMNL)
  - <u>https://tmnl.nl/</u>



<u>https://github.com/mhaseebtariq/fastman</u>

