KU LEUVEN

Boosting Credit Risk Data Quality using Machine Learning and eXplainable AI Techniques

The 8th Workshop on MIning DAta for financial applicationS, ECML-PKDD 2023, September 22, 2023 - Turin, Italy

Elena Tiukhova	Giuseppe Storti
Adriano Salcuni	Fabio Forte
Can Oguz	Bart Baesens
Marcella Niglio	Monique Snoeck

Outline

- Problem statement
- Related work
- Feature engineering
- Anomaly detection
- Explaining anomalies with SHAP
 - SHAP for iForest
 - SHAP for Autoencoder
- Results
- Conclusions
- Future work

DQ framework

Motivation

Goal: investigate how ML models can be used to discover data quality (DQ) problems in credit risk data using a human-in-the-loop approach and bridge DQ and credit risk domains

DQ: Garbage in – garbage out

Related work

Credit risk

- Regulatory
 compliance
 - Basel III (BIS, 2017)
 - IFRS 9 (IFRS, 2014)

DQ in finance

- Data standardization and cleaning according to business rules and constraints (Nadinic & Kalpić, 2008)
- Total Data Quality Management (TDQM) for credit risk (Moges et al., 2013)
- ML for Anomaly detection in accounting entries (Bakumenko & Elragal, 2022)

eXplainable AI in Finance

- Auditing transparency (Zhang et al., 2022)
- Credit risk prediction explainability (Gramegna & Giudici, 2021; Bussmann et al., 2021; de Lange et al., 2022)

Credit risk overview

Source: Basel III

Credit risk estimation

- Internally determine the capital required to cover for unexpected losses
- Externally comply with accounting (IFRS 9) and banking (Basel III) standards

Risk-Weighted Assets (RWA)

- A standardized approach to measure credit risk
- Constrains the use of internal models
- Relies heavily on Probability of Default (PD), Loss Given Default (LGD) and Exposure At Default (EAD)

DQ framework

KU LEUVEN

Conclusions

Feature engineering

- ~175k loans for SME & Mid. Corporates from the multi-national bank
- Risk-Weighted Assets (RWA)
- Outstanding Amount (OS)
- Provisions (P)
- Maximal Limit (ML)
- Loss Given Default (LGD)
- Exposure-at-Default (EAD)
- Probability of Default (PD)

Ratio = $\ln \frac{V_t}{V_{t-1}}$: the way to incorporate changes in time

The **idea** is to check if the movements have business reasons or are anomalous.

Data Extraction Data Preprocessing Modelling Top cases Local explanations DQ expert check False Positive Random System

iForest

eXplainable AI: SHAP

- SHAP TreeExplainer
- Explains the depth of the average path length of iTrees (Lundberg et al., 2020)
- Path length as a sum of additive feature contributions

Autoencoder

Conclusions

- SHAP KernelExplainer for Autoencoder
- Explains a reconstruction error: connection between the features with high reconstruction errors and the features affecting the reconstruction error the most (Antwarg et al., 2021)

Results of Round 2: top-20 cases

Loan	DQ-Issue?	Agg. Score	DQ issue features – feedback	SHAP top-3?	Potential systemic
Loan 1	Yes	0,98	LGD	Yes	
Loan 2	Yes	0,98	LGD & Max. Limit	Yes	
Loan 3	No	0,97			
Loan 4	No	0,95			
Loan 5	No	0,92			
Loan 6	Yes	0,86	Relationship EAD, RWA, OS	Yes	
Loan 7	Yes	0,86	Relationship EAD, RWA, OS	Yes	
Loan 8	No	0,85			
Loan 9	Yes	0,85	EAD	Yes	;
Loan 10	Yes	0,79	Relationship EAD, RWA, OS	Yes	Precision@20
Loan 11	Yes	0,78	Relationship EAD, RWA, OS	Yes	
Loan 12	Yes	0,78	Relationship EAD, RWA, OS	Yes	
Loan 13	Yes	0,78	Relationship EAD, RWA, OS	Yes	
Loan 14	Yes	0,78	Relationship EAD, RWA, OS	Yes	
Loan 15	No	0,77			
Loan 16	Yes	0,75	Relationship EAD, RWA, OS	Yes	
Loan 17	Yes	0,75	Relationship EAD, RWA, OS	Yes	
Loan 18	No	0,75			
Loan 19	Yes	0,74	Relationship EAD, RWA, OS	Yes	
Loan 20	Yes	0,72	OS	No	

KU LEUVEN

13

SHAP

Case 1: max. AE score

	RWA_ RATIO	OS_RATIO	PROVISION _RATIO	EAD_ RATIO	LGD_ RATIO	PD_RATIO	MAX_LIMIT_ RATIO
Loan 1	-16,84	-32,97	0	-17,76	0,99	0	-14,55

Case 2: max. IF score

	RWA_ RATIO	OS_RATIO	PROVISION_ RATIO	EAD_ RATIO	LGD_ RATIO	PD_RATIO	MAX_LIMIT_R ATIO
Loan 2	-16,96	-31,66	-28	-16,74	0,22	-1,27	-13,24

DQ expert feedback:

Max. Limit is set to 1 which is incorrect - potential systematic DQ issue

DQ expert feedback:

Risk class remained the same but LGD became higher

So far Complementing static univariate DQ rules with dynamic multivariate ML model

Novel ML DQ framework that can be generalized at other institutions

RWA miscalculation analysis is still ongoing

Transparent model output that increases trust in DQ ML techniques

SO

Future work

DQ application for stakeholders

LSTM Autoencoder for anomaly detection on daily time series data

Model calibration based on the feedback

References

- Moges, H. T., Dejaeger, K., Lemahieu, W., & Baesens, B. (2013). A multidimensional analysis of data quality for credit risk management: New insights and challenges. *Information & management*, 50(1), 43-58.
- Bank for International Settlements. (2017). Basel III: Finalising post-crisis reforms. Bank for International Settlements.
- IFRS IFRS 9 Financial Instruments. (2014). https://www.ifrs.org/issued-standards/list-of-standards/ifrs-9-financial-instruments/
- Nadinić, B., & Kalpić, D.(2008). Data quality in finances and its impact on credit risk management and CRM integration. In Proceedings of the Third International Conference on Software and Data Technologies, pages 327-331 DOI: 10.5220/0001879103270331
- Bakumenko, A., & Elragal, A. (2022). Detecting anomalies in financial data using machine learning algorithms. Systems, 10(5), 130.
- Zhang, C.A., Cho, S., Vasarhelyi, M.: Explainable artificial intelligence (XAI) in auditing. International Journal of Accounting Information Systems 46, 100572 (2022)
- Gramegna, A., Giudici, P.: Shap and lime: an evaluation of discriminative power in credit risk. Frontiers in Artificial Intelligence 4, 752558 (2021)
- Bussmann, N., Giudici, P., Marinelli, D., Papenbrock, J.: Explainable machine learning in credit risk management. Computational Economics 57, 203–216 (2021)
- de Lange, P.E., Melsom, B., Vennerød, C.B., Westgaard, S.: Explainable ai for credit assessment in banks. Journal of Risk and Financial Management 15(12), 556 (2022)
- Han, S., Hu, X., Huang, H., Jiang, M., Zhao, Y.: Adbench: Anomaly detection benchmark. Advances in Neural Information Processing Systems 35, 32142–32159 (2022)
- Tiukhova, E., Reusens, M., Baesens, B., & Snoeck, M. (2022, May). Benchmarking conventional outlier detection methods. In *Research Challenges in Information Science:* 16th International Conference, RCIS 2022, Barcelona, Spain, May 17–20, 2022, Proceedings (pp. 597-613). Cham: Springer International Publishing.
- Lundberg, S.M., Erion, G., Chen, H., DeGrave, A., Prutkin, J.M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N., Lee, S.I.: From local explanations to global understanding with explainable ai for trees. Nature Machine Intelligence 2(1), 2522–5839 (2020)
- Antwarg, L., Miller, R. M., Shapira, B., & Rokach, L. (2021). Explaining anomalies detected by autoencoders using Shapley Additive Explanations. Expert systems with applications, 186, 115736.

Thank you for your attention!

